11 Limits of A Function

Standards:
MCA1
MCA1b
MCA2
MCA2

This was created by Keenan Xavier Lee - 2012. See my website for more information, lee-apcalculus.weebly.com.

Old Evaluating Functions
Let's consider the following graph:

Answer the following:
(2) $f(0)=2$
(2) $f(3)=$ undefined
(3) $f(-3)=1$
(4) $f(7)=3$
new Evaluating Limits of a Function
Let's consider the function: $y=x-4$. Let's say that we take numbers close to $5(4.9,4.99,4.999,5.001,5.01,5.1)$ and we substitute those numbers into the function. When we do this what happens?

As the x-values gets closer to S, it seems the y-values get closer to 1.

This was created by Keenan Xavier Lee - 2014. See my website for more information, lee-apcalculus.weebly.com.

Basic Idea of a limit
It's where the y-values "tend to go" as the x-values approach a certain number

$$
\lim _{x \rightarrow a} f(x)=y
$$

Let's consider the graph's of these 2 functions:

$$
f(x)=x-1 \text { and } g(x)=\frac{x^{2}-4 x+3}{x-3}
$$

$$
g(x)=\frac{x^{2}-4 x+3}{x-3}=\frac{(x-1)(x-3)}{(x-3)}=x-1
$$ $g(x)$ acts like $x-1$ but $x \neq 3$.

$$
g(3)=\text { undefined }
$$

Conclusion Actual values of the function does not matter. It's where the y-values approach that matter for limits.

Definition of a Limit

$$
\lim _{x \rightarrow a} f(x)=L
$$

This means...
"the limit of $f(x)$, as x approaches
 (a), equals L."

If we take the values of $f(x)$ arbitrarily close to L (as close to L as we want) by taking x to be sufficiently close to a (on either side) but not equal to a.
[Exampl e1] Evaluate.

(a) $f(1)=3$
(b) $\lim _{x \rightarrow 1} f(x)=1$

C] $f(3)=4$
(2)
(2)
(e) $\lim _{x \rightarrow 3} f(x)=4$
[Exampl ez] Evaluate.

a

$$
\begin{aligned}
& \text { a } f(2)=\text { undefined } \\
& \text { b] } f(s)=4 \\
& \text { c] } \lim _{x \rightarrow s} f(x)=\text { D.N.E }
\end{aligned}
$$

$$
\text { (b) } f(s)=4
$$

[d] $f(8)=1$
(e) $\lim _{x \rightarrow 8} f(x)=4$
(f) $f(0)=5$
(9) $\lim _{x \rightarrow 0} f(x)=5$

One-sided limits
One -sided limits are almost the same concept as "two-sided limits" but we will be taking the limits from ONL y one side of the particular x-value.
(1) $\lim _{x \rightarrow a^{-}} f(x)=\begin{aligned} & \operatorname{limin}_{\text {(fit }} \text { as } x \text { approaches (a) from the left sides less than a). }\end{aligned}$
(2) $\lim _{x \rightarrow a^{+}} f(x)=\begin{aligned} & \text { Limit as } x \text { approaches (a) from the right side } \\ & \text { (for values greater than } a \text {) }\end{aligned}$

FACT

$$
\lim _{x \rightarrow a} f(x)=L \text { if and only if }
$$

[Exampl es] Evaluate.

(a) $\lim _{t \rightarrow 0^{-}} g(t)=-1$
[6] $\lim _{t \rightarrow 0^{+}} g(t)=2$
(C) $\lim _{t \rightarrow 0} g(t)=$ D.N.E
(dd) $\lim _{t \rightarrow 2^{-}} g(t)=2$
es $\lim _{t \rightarrow 2} g(t)=$ D. N.E
(f) $g(2)=1$

Infinite Limits,

Sometimes functions contain VERTICAL ASYMPTOTES, where x approaches (a), the y-values get larger \& larger. Since (a) does not exist, y-values will get really close to a defined value but will NEVER become defined. So we say the y-values "take off" to infinity.

Definition of Infinite Limits

$$
\lim _{x \rightarrow a} f(x)=\infty \text { or } \lim _{x \rightarrow a} f(x)=-\infty
$$

" $f(x)$ becomes infinite as x approaches a ".

- If x approaches (a) \& y-values get positively larger \& larger, we say it guest to infinity (∞)
- If x approaches (a) \& y-values get negatively larger \& larger, we say it goes to infinity $(-\infty)$

Vertical Asymptotes
If at least 1 of the following is true, then there exist a vertical asymptote:
(1) $\lim _{x \rightarrow a^{-}} f(x)=\infty \quad 2 \lim _{x \rightarrow a^{-}} f(x)=\infty \quad 3 \lim _{x \rightarrow a^{+}} f(x)=\infty$
(4) $\lim _{x \rightarrow a^{-}} f(x)=-\infty \quad 5 \lim _{x \rightarrow a^{-}} f(x)=-\infty \quad 6 \lim _{x \rightarrow a^{+}} f(x)=-\infty$
[Example 4] Evaluate.

(a) $\lim _{x \rightarrow-1^{-}} f(x)=-\infty$
(b) $\lim _{x \rightarrow-1^{+}} f(x)=\infty$
"CUe
[Example5] Evaluate.

(9) $\lim _{x \rightarrow 3^{-}} f(x)=\infty$
(b) $\lim _{x \rightarrow 3^{+}} f(x)=\infty$
(c) $\lim _{x \rightarrow 3} f(x)=\infty$
[Exampleb] Evaluate.

(a) $\lim _{x \rightarrow-5^{-}} f(x)=\infty$
(b) $\lim _{x \rightarrow S} f(x)=$ D.N.E
(C) $\lim _{x \rightarrow 0} f(x)=$ D.N.E
(d) $\lim _{x \rightarrow 2} f(x)=-2.5$
(e) $\lim _{x \rightarrow-1} f(x)=3$
[Example 7] Sketch the grash of an example of a function satisfying the following conditions:

$$
\lim _{x \rightarrow 1^{-1}} f(x)=\infty, \lim _{x \rightarrow 4} f(x)=3, f(-2)=0
$$

