1.3 Rates \& Rates

Standards:
N. Q. 1
N. Q. 2

Old Rewriting Radicals
[Examples] Simplify Radicals.
(1) $\sqrt{50}$
(2)

$$
=\sqrt{25} \cdot \sqrt{2}
$$

$$
=5 \sqrt{2}
$$

$$
\begin{aligned}
& \sqrt{45} \\
&=\sqrt{9} \cdot \sqrt{5} \text { (3) } \sqrt{8} \\
&=3 \sqrt{5}=2 \sqrt{2} \\
&=3
\end{aligned}
$$

[Examples] Convert between Radicals \& Exponent Forms.
(1) $10^{\frac{1}{2}}=\sqrt{(10)^{2}}$
(2) $\sqrt[5]{(7)^{3}}=7^{\frac{3}{5}}$
(3)

$$
\begin{aligned}
100^{\frac{3}{2}} & =\sqrt{(100)^{3}} \\
& =\sqrt{100000}
\end{aligned}
$$

new Ratios
What is a ratio?
A ratio is a comparison between 2 quantities.
For Instance l lets say someone looks at a group, count ideas, $/$ refer to "the ratio of boys ta girls".
\rightarrow basically means someone is comparing the number of girls to the number of boys.
Ratios allow us to compare the relative sizes of 2 quantities. The comparison can be represented by ratio symbols:
$a: b$ or $\frac{a}{b}$ or a to b.

This was created by Keenan Xavier Lee - 2015. See my website for more information, lee-apcalculus.weebly.com.

There are two ways to express RATIOS:
(1) Part to part ratios
(2) Part to whole ratios.

1 Part to Part Ratios
This involves comparing one part of the whole to the other part of the while.
[Example 1] The tennis team won 10 games of its 16 matches. Find the ratio of wins to losses.

Solution:
$1^{\text {st }}$ part: wins $=10$
nd part: losses $=6$
$2^{\text {nd }}$ part: losses $=6$

$$
=\frac{10 \mathrm{mins}}{6 \text { losses }} \text { or } 10 \text { wimsto } 6 \text { losses or } 10 \text { wins : } 6 \text { losses. }
$$

please note: order matters... Be mindful in how the ratio is asked for. That will determine how you will express the ratio.
[Example 2] Mr. Lee's $2^{\text {nd }}$ period class has 24 students. He has 11 boys in the class. What is the ratio of girls to boys?

Solution:

$$
\begin{aligned}
& \text { 1st part: boys }=11 \\
& 2^{\text {nd }} \text { part: girls }=13 \\
& =\frac{13 \text { girls }}{11 \text { boys }} \text { or } 13 \text { girls to } 11 \text { boys or } 13 \text { girls: } 11 \text { boys }
\end{aligned}
$$

What is the best interpretation of the ratio in Example 1?
Let's recall:
$\frac{10 \text { wins }}{6 \text { losses }} \quad$ This fraction can be simplified!

$$
\frac{10 \mathrm{wins}}{6 \text { losses }} \div \frac{2}{2}=\frac{5 \mathrm{wns}}{3 \text { losses }}
$$

Conclusion For every 5 wins, there are 3 losses.

Unit Rate is the simplified version of a fraction. It tells us the smallest quantity of "units" when comparing quantities.
[2] Part to Whole Ratios
This involves comparing one part of the whole to the entirety of the whole.
[Example 3] LSHS has 7 administrators \& 50 teachers. What is the ratio of admuistraters to school staff?

Solution:

$$
\begin{aligned}
& \text { part } \rightarrow 7 \mathrm{adm} \\
& \text { whole } \rightarrow 50+7=57 \text { school } \\
& \text { staff } \\
& =\frac{7 \mathrm{adm}}{} \begin{array}{l}
57 \text { school staff }
\end{array}
\end{aligned}
$$

Proportions A proportion is a statement that sets 2 given ratios equal.
For instance Let's say a pizza has 8 slices. What if we have 2 pizzas? How many slices do we have?

$$
=16 \text { slices } .
$$

Let's set up a mathematical argument expressing the answer.

$$
\begin{aligned}
& \frac{1 \text { pizza }}{8 \text { slices }}=\frac{2 \text { pizzas }}{x \text { slices }} \\
& 1 x=(2)(8) \\
& x=16 \text { slices. }
\end{aligned}
$$

cross multiply to solve for x.

Let's say there are 88 slices. How many pizzas?

$$
\begin{aligned}
& \frac{1}{\frac{1}{\text { pizza }}}=\frac{x \text { pizzas }}{88 \text { slices }} \\
& 8 x=(88)(1) \\
& 8 x=88 \\
& x=11 \text { pizzas }
\end{aligned}
$$

Conclusion To solve proportions, you must:

1. set the 2 ratios equal to each other (with units aligned)
2. cross multiply
3. solve for the unknown quantities.
[Example 4] Terin \& Dado like to eat raisins and peanuts. Their favorite mix is 6 ralsins for every 2 peanuts. How many raisins will they need for peanuts?

Solution:
6 peanuts $=2$ peanuts

$$
\begin{gathered}
\frac{6 \text { raisins }}{2 \text { peanuts }}=\frac{x \text { raisins }}{8 \text { peanuts }} \\
(6)(8)=2 x \\
48=2 x \\
24 \text { raisins }=x .
\end{gathered}
$$

