UNIT CIRCLE

You can determine the sine or the cosine of any standard angle on the unit circle.
The x-coordinate of the circle is the cosine and the y-coordinate is the sine of the angle. Recall tangent is defined as \sin / \cos or the slope of the line.

Examples:

$\sin \frac{\pi}{2}=1 \quad \cos \frac{\pi}{2}=0 \quad \tan \frac{\pi}{2}=$ und
*You must have these memorized OR know how to calculate their values without the use of a calculator.
36.
a.) $\sin \pi$
b.) $\cos \frac{3 \pi}{2}$
c.) $\sin \left(-\frac{\pi}{2}\right)$
d.) $\sin \left(\frac{5 \pi}{4}\right)$
e.) $\cos \frac{\pi}{4}$
f.) $\cos (-\pi)$
g) $\cos \frac{\pi}{3}$
h) $\sin \frac{5 \pi}{6}$
i) $\cos \frac{2 \pi}{3}$
j) $\tan \frac{\pi}{4}$
k) $\tan \pi$

1) $\tan \frac{\pi}{3}$
m) $\cos \frac{4 \pi}{3}$
n) $\sin \frac{11 \pi}{6}$
o) $\tan \frac{7 \pi}{4}$
p) $\sin \left(-\frac{\pi}{6}\right)$

TRIGONOMETRIC EQUATIONS

Solve each of the equations for $0 \leq x<2 \pi$.
37. $\sin x=-\frac{1}{2}$
39. $4 \sin ^{2} x=3$
**Recall $\sin ^{2} x=(\sin x)^{2}$
**Recall if $x^{2}=25$ then $x= \pm 5$
38. $2 \cos x=\sqrt{3}$
40. $2 \cos ^{2} x-1-\cos x=0$ *Factor

42. Write an equation for the function that has the shape of $f(x)=x^{3}$ but moved siy units to the left and reflected over the $\not x$-axis.
43. If the ordered pair $(2,4)$ is on the graph of $\not(x)$, find one ordered pair that will be on the following fynctions:
a) $f(x)-3$
b) $f(x-3)$
c) $2 f(x)$
11
d) $f(x-2)+1$
e) $-f(x)$

