

*You must have these memorized OR know how to calculate their values without the use of a calculator.

36. a.)
$$\sin \pi$$
 b.) $\cos \frac{3\pi}{2}$ c.) $\sin \left(-\frac{\pi}{2}\right)$ d.) $\sin \left(\frac{5\pi}{4}\right)$

e.)
$$\cos \frac{\pi}{4}$$
 f.) $\cos(-\pi)$ g) $\cos \frac{\pi}{3}$ h) $\sin \frac{5\pi}{6}$

i)
$$\cos\frac{2\pi}{3}$$
 j) $\tan\frac{\pi}{4}$ k) $\tan\pi$ l) $\tan\frac{\pi}{3}$

m)
$$\cos\frac{4\pi}{3}$$
 n) $\sin\frac{11\pi}{6}$ o) $\tan\frac{7\pi}{4}$ p) $\sin\left(-\frac{\pi}{6}\right)$

TRIGONOMETRIC EQUATIONS

Solve each of the equations for $0 \le x < 2\pi$.

37.
$$\sin x = -\frac{1}{2}$$

38. $2\cos x = \sqrt{3}$
39. $4\sin^2 x = 3$
**Recall $\sin^2 x = (\sin x)^2$
**Recall if $x^2 = 25$ then $x = \pm 5$
TRANSFORMATION OF FUNCTIONS
FRANSFORMATION OF FUNCTIONS
 $h(x) = f(x) - c$ Vertical shift *c* units up $h(x) = f(x - c)$ Horizontal shift/*c* units right
 $h(x) = f(x) - c$ Vertical shift *c* units down $h(x) = f(x + c)$ Horizontal shift/*c* units right
 $h(x) = -f(x)$ Reflection over the x-axis
41 viven $f(x) = x^2$ and $g(x) = (x - 3)^2 + 1$. How the does the graph of $g(x)$ differ from $f(x)$?
42. Write an equation for the function that has the shape of $f(x) = x^3$ but moved sivunits to the left and reflected over the *x*-axis.
43. If the ordered pair(2, 4) is on the graph of $f(x)$, find one ordered pair that will be on the following functions:
a) $f(x) - 3$ b) $f(x - 3)$ c) $2f(x)$ d) $f(x - 2) + 1$ e) $-f(x)$
11