Classwork 2.1 Vertical Angles, Linear Pairs, Complementary/Supplementary Angles \& Angle Bisector Find the complement of each angle.

1. 35° \square
2. 48° \square
$3.12^{\circ} \quad \square$

Find the supplement of each angle.
4. 40° \square
5. 126° \square
6. 72° \square

Answer the following questions as specific as possible.
7. Can two supplementary angles both be obtuse angles? Acute angles? Why?
\square
8. Can two supplementary angles both be right angles? Why?
\square

Refer to the diagram to answer each. $\overrightarrow{B E}$ is an angle bisector.
9. If $\mathrm{m} \angle \mathrm{ABE}=40^{\circ}$, find $\mathrm{m} \angle \mathrm{EBC}$.

10. If $\mathrm{m} \angle \mathrm{ABC}=70^{\circ}$, find $\mathrm{m} \angle \mathrm{ABE}$. \square

11. $\angle 1$ and $\angle 2$ are complementary. Solve for x and the measure of both angles.

$$
\begin{aligned}
& <1=5 x+2 \\
& <2=2 x+4
\end{aligned}
$$

\square
12. $\angle 1$ and $\angle 2$ are supplementary. Solve for x and the measure of both angles.

$$
\begin{aligned}
& <1=12 x+3 \\
& <2=4 x+1
\end{aligned}
$$

\square
13. One of two complementary angles is 16 degrees less than its complement. Find the measure of both angles. \square

Find the complement of each angle.

1. 35°
55°
2. 48°
42°
$3.12^{\circ} \quad 78^{\circ}$

Find the supplement of each angle.
4. 40°
140°
5. 126°
54o
$6.72^{\circ} \quad 108^{\circ}$
7. Can two supplementary angles both be obtuse angles? Acute angles? Why?

No, if both angles are obtuse angles (between 90° and 180°) when you add them together. the sum will be over 180°
8. Can two supplementary angles both be right angles? Why?

Yes, as if both are right angles, both equal 90° and $90+90=180^{\circ}$

Refer to the diagram to answer each. $\overrightarrow{B E}$ is an angle bisector.
9. If $\mathrm{m} \angle \mathrm{ABE}=40^{\circ}$, find $\mathrm{m} \angle \mathrm{EBC}$.
40°
10. If $\mathrm{m} \angle A B C=70^{\circ}$, find $\mathrm{m} \angle A B E$.
35°

11. $\angle 1$ and $\angle 2$ are complementary. Solve for x and the measure of both angles.
\square
$<1=5 x+2$
$<2=2 x+4$

$$
\begin{array}{ll}
x=12 & <1=62^{\circ} \\
<2=28^{\circ}
\end{array}
$$

12. $\angle 1$ and $\angle 2$ are supplementary. Solve for x and the measure of both angles.
\square
$<1=12 x+3 \quad \mathrm{x}=11 \quad<1=135^{\circ}$
$<2=4 x+1$
$<2=45^{\circ}$
13. One of two complementary angles is 16 degrees less than its complement. Find the measure of both angles.

$$
\begin{aligned}
& <1=53^{\circ} \\
& <7=37 \circ
\end{aligned}
$$

This was created by Keenan Xavier Lee \& Roxann Crawford - 2014. See my website for more information, lee-apcalculus.weebly.com

1. One of two supplementary angles is 98° greater than its supplement. Find the measure of both angles.
\square
2. One of two supplementary angles is 123° less than twice its supplement. Find the measure of both angles.
\square

Solve for the variable(s).
3.

5. Given that $\overline{P U}$ is an angle bisector,

Find $m<1$, if $m<S U T=34^{\circ}$

4.

$$
\mathrm{x}=
$$

6. Given that $\overline{P Q}$ is an angle bisector, Find $m<S Q R$, if $m<2=13^{\circ}$

7. Given that $\overline{P X}$ is an angle bisector,

Find x if $\mathrm{m}<2=4 \mathrm{x}+5$ and $\mathrm{m}<1=5 \mathrm{x}-2$
 $\mathrm{x}=$

Solutions

1. One of two supplementary angles is 98° greater than its supplement. Find the measure of both angles.

$$
\begin{aligned}
& <1=41^{\circ} \\
& <2=139^{\circ}
\end{aligned}
$$

2. One of two supplementary angles is 123° less than twice its supplement. Find the measure of both angles.

$$
\begin{aligned}
& <1=53^{\circ} \\
& <2=37^{\circ}
\end{aligned}
$$

Solve for the variable(s).
3.

$x=50^{\circ}$
$y=130^{\circ}$
$z=50^{\circ}$
5. Given that $\overline{P U}$ is an angle bisector,

Find $m<1$, if $m<S U T=34^{\circ}$

$$
\mathrm{m}<1=17^{\circ}
$$

7. Given that $\overline{P X}$ is an angle bisector,

Find x if $\mathrm{m}<2=4 \mathrm{x}+5$ and $\mathrm{m}<1=5 \mathrm{x}-2$

$$
x=7
$$

4.

$$
x=134^{\circ}
$$

6. Given that $\overline{P Q}$ is an angle bisector, Find $m<S Q R$, if $m<2=13^{\circ}$

$$
\mathrm{m}<1=26^{\circ}
$$

