2.10 Logarithmic Differentiation

Standard:
 MCD1e

Old Properties of Logarithmic \& Exponential Functions
Let's recall properties of exponential functions:
(1) $e^{a} \cdot e^{b}=e^{a+b}$
(2) $\frac{e^{a}}{e^{b}}=e^{a-b}$
(3) $\left(e^{a}\right)^{b}=e^{a b}$
(4) $e^{-n}=\frac{1}{e^{n}}$
(5) $e^{0}=1$.

Let's recall properties of logarithmic functions:
(1) $\ln x+\ln y=\ln (x y)$
(2) $\ln x-\ln y=\ln \left(\frac{x}{y}\right)$
(3) $\ln x^{y}=y \ln x$
(6) $\ln 1=0$

Hew Logarithmic Differentiation
Let's consider $y=x^{n}$. (We know that $\frac{d}{d x} x^{n}=n x^{n-1}$.) Let's assume that we don't know the power rule, but we $d x$ want the formula for it.

So, $y=x^{n}$.
Then, $\ln y=\ln x^{n}$ take \ln on both sides

$$
\begin{aligned}
& \ln y=n \ln x \text { - simplify using law of logs } \\
& \frac{d}{d x}(\ln y)=\frac{d}{d x}(n \ln x) \text { - differentiate } \\
& \frac{1}{y} \cdot y^{\prime}=n \cdot \frac{1}{x} \text { - implicit differentiation }
\end{aligned}
$$

$$
\begin{aligned}
& y^{\prime}=n \cdot \frac{y}{x}-\text { solve for } y^{\prime} \\
& y^{\prime}=n \cdot \frac{x^{n}}{x}-\text { fact: } y=x^{n} \\
& y^{\prime}=n x^{n-1} .
\end{aligned}
$$

[Examples] Differentiate.
(1) $f(x)=x^{x}$

Let $y=x^{x}$

$$
\begin{gathered}
\ln y=\ln x^{x} \\
\ln y=x \ln x \\
\frac{d^{\prime}}{d x}(\ln y)=\frac{d}{d x}(x \ln x) \\
\frac{1}{y} \cdot y^{\prime}=x \cdot \frac{1}{x}+\ln x \cdot 1 \\
\frac{1}{y} \cdot y^{\prime}=1+\ln x \\
y^{\prime}=y(1+\ln x) \\
y^{\prime}=x^{x}(1+\ln x) .
\end{gathered}
$$

$$
\begin{aligned}
& \text { (2) } y=(\sin x)^{\ln x} \\
& \ln y=\ln (\sin x)^{\ln x} \\
& \ln y=\ln x[\ln (\sin x)] \\
& \frac{1}{y} \cdot y^{\prime}=\ln x \cdot \frac{1}{\sin x} \cdot \cos x+\ln (\sin x) \cdot \frac{1}{x} \\
& \frac{1}{y} \cdot y^{\prime}=\frac{\ln x \cos x}{\sin x}+\frac{\ln (\sin x)}{x} \\
& y^{\prime}=y\left[\ln x \cot x+\frac{\ln (\sin x)}{\lambda}\right] \\
& y^{\prime}=(\sin x)^{\ln x}\left[\ln x \cot x+\frac{\ln (\sin x)}{x}\right]
\end{aligned}
$$

