2.11 Derivatives of Inverse Trigonometric Functions

[Old] Implicit Differentiation \& Chain Rule
(1)

$$
\begin{aligned}
\frac{d}{d x}\left[2 x+\sin \left(2 x^{2}\right)+5\right] & =2+\left[\cos \left(2 x^{2}\right) \cdot 4 x\right] \\
& =2+4 x \cos \left(2 x^{2}\right)
\end{aligned}
$$

(2)

$$
\begin{aligned}
& \frac{d}{d x}\left(x^{4} y+4 y^{3}=10 x\right)= {\left[\left(x^{4}\right)\left(y^{\prime}\right)+(y)\left(4 x^{3}\right)+12 y^{2} \cdot y^{\prime}=10\right.} \\
& x^{4} y^{\prime}+4 x^{3} y+12 y^{2} y^{\prime}=10 \\
& x^{4} y^{\prime}+12 y^{2} y^{\prime}=10-4 x^{3} y \\
& y^{\prime}\left(x^{4}+12 y^{2}\right)=10-4 x^{3} y \\
& y^{\prime}=\frac{10-4 x^{3} y}{x^{4}+12 y^{2}}
\end{aligned}
$$

(3)

$$
\begin{aligned}
y & =\cos ^{2}(4 x+3)=(\cos 4 x+3)^{2} \\
y^{\prime} & =2(\cos (4 x+3)) \cdot(-\sin (4 x+3)) \cdot 4 \\
& =-8 \cos (4 x+3) \sin (4 x+3) .
\end{aligned}
$$

hew Inverse Trigonometric Function Derivatives
-The inverse trig functions are $\sin ^{-1} x, \cos ^{-1} x, \tan ^{-1} x$.
please note: These do not mean $\frac{1}{\sin x}, \frac{1}{\cos x}, \frac{1}{\tan x} \rightarrow$ these are reciprocal functions like $\csc x, \sec x$ \& cot.

- Inverse Trig Functions are inverses of each trig functions.
(For example) $\sin ^{-1} x \rightarrow$ means "inverse sine" where $\sin ^{-1} x$ is the angle whose sine is x.

$$
\begin{aligned}
& \sin \theta=x \\
& \theta=\sin ^{-1} x .
\end{aligned} \downarrow \begin{aligned}
& \sin y=x \\
& \sin ^{-1} x=y
\end{aligned}
$$

Let's consider $y=\sin ^{-1} x$. Derive the derivative.

$$
y=\sin ^{-1} x
$$

So, $\sin y=x$.
Then if we find the derivative:

$$
\begin{aligned}
\cos y \cdot y^{\prime} & =\frac{1}{y^{\prime}}=\frac{1}{\cos y}
\end{aligned}
$$

Since $y=\sin ^{-1} x$, then $y^{\prime}=\frac{1}{\cos \left(\sin ^{-1} x\right)}$.
Let $\theta=\sin ^{-1} x$
Then $\sin \theta=x$ 。

$$
\begin{aligned}
x^{2}+n^{2} & =1^{2} \\
7^{2} & =1 \cdot x^{2} \\
? & =\sqrt{1-x^{2}}
\end{aligned}
$$

Now, $y^{\prime}=\frac{1}{\cos \theta} \quad \& \quad \cos \theta=\frac{\sqrt{1-x^{2}}}{1}$,
Therefore $y^{\prime}=\frac{1}{\sqrt{1-x^{2}}}$.

Let's consider $y=\tan ^{-1} x$. Derive the derivative.

$$
y=\tan ^{-1} x
$$

So, $\tan y=x$.
Now, take the denvative:

$$
\begin{array}{r}
\sec ^{2} y \cdot y^{\prime}=1 \\
y^{\prime}=\frac{1}{\sec ^{2} y}
\end{array}
$$

Since $y=\tan ^{-1} x, \quad y^{\prime}=\frac{1}{\sec ^{2}\left(\tan ^{-1} x\right)}$.
Let $\theta=\tan ^{-1} x$.

$$
\begin{aligned}
& \begin{array}{l}
\text { Back ground } \\
\text { Information }
\end{array} \Rightarrow \begin{array}{l}
\text { Trig Identities } \\
\sin ^{2} x+\cos ^{2} x=1 \\
1+\tan ^{2} x=\sec ^{2} x
\end{array}
\end{aligned}
$$

So since $1+\tan ^{2} x=\sec ^{2} x$,

$$
y^{\prime}=\frac{1}{1+\tan ^{2} \theta}
$$

Furthermore, since $\tan ^{2} \theta$,

$$
y^{\prime}=\frac{1}{1+x^{2}}
$$

Derivatives of Inverse Tig Functions

$$
\begin{aligned}
& \frac{d}{d x} \sin ^{-1} x=\frac{1}{\sqrt{1-(f(x))^{2}}} \cdot f^{\prime}(x) \quad \frac{d}{d x} \cos ^{-1} x=\frac{-1}{\sqrt{1-(f(x))^{2}}} \cdot f^{\prime}(x) \\
& \frac{d}{d x} \tan ^{-1} x=\frac{1}{1+(f(x))^{2}} \cdot f^{\prime}(x)
\end{aligned}
$$

[Examples]
(1)

$$
\begin{aligned}
& f(x)=\sin ^{-1}\left(x^{2}\right) \\
& f^{\prime}(x)=\frac{1}{\sqrt{1-\left(x^{2}\right)^{2}}} \cdot 2 x=\frac{2 x}{\sqrt{1-x^{4}}}
\end{aligned}
$$

(2)

$$
\begin{aligned}
\frac{d}{d x} \arcsin \left(3 x^{2}\right) & =\frac{1}{\sqrt{1-\left(3 x^{2}\right)^{2}}} \cdot 9 x \\
& =\frac{9 x}{\sqrt{1-9 x^{4}}}
\end{aligned}
$$

(3)

$$
\begin{aligned}
\frac{d}{d x} \arccos \left(\frac{1}{x}\right) & =\frac{-1}{\sqrt{1-\left(x^{2}\right)^{2}}} \cdot\left(-x^{-2}\right) \\
& =\frac{1}{x^{2} \sqrt{1-x^{-2}}}
\end{aligned}
$$

Homewrk page 170

$$
\cdot 1-7,13,21,27
$$

