2.13 Real World Applications

For Linear Equations, Inequalities, Systems \& Functions
Standards:

A.REI. 3
F.IF. 5
A.CED. 1
A.CED. 2
A.CED. 3
F.BF. 1

Tips for creating Linear Functions:
Step 1: determine what is the quantity that varies - that's the variable, and what is the quantity that will remain the samethat's the constant.
step 2: denote what is the independent variable (x) and what is the dependent variable $(f(x))$
step 3: Create the function: (ie.) Dep. Var $=\operatorname{Ind}$ var + constant $f(x)=m x+c$
step 4: Answer the question appropriately.
[Example] Ahmed has a saving's plan. His parent's will give him $\$ 250$ to start his investment and add $\$ 50$ each month. Model this situation.

- quantly that varies $=\$ 50$ per month
- quantity remaining the same $=\$ 250$

Let $x=$ month and $f(x)=$ total amount.

$$
f(x)=50 x+250
$$

How much does Ahmed have in his savings account after 3 months? $x=3$

$$
\begin{aligned}
f(3) & =50(3)+250 \\
& =\$ 400 .
\end{aligned}
$$

How many months will Ahmed have to wait if he wants $\$ 1150$ in his savings account?

$$
\begin{aligned}
& f(x)=1150 . \\
& f(x)=50 x+250 \\
& 1150=50 x+250 \\
& -250=-250 \\
& 9900=50 x \\
& 18 \text { months }=x .
\end{aligned}
$$

Tips for creating Linear Inequalities

- very similar to creating Linear Equations, except solving will most likely involve shading.
- Be familiar with language like:
(examples)
- Less than $<\rightarrow$ fewer than, is below
- greater than $>\rightarrow$ more than,' exceeds,
- less than or equal to $\rightarrow \leq$ at most,'maximumvalue of
- greater than or equal to $\longrightarrow \geq$ at least, minimum value of
[Example] Michelle is selling jewelry to earn money for camp. Bracelets sell for $\$ 2$ and neck Laces sell for $\$ 23$ and she needs to make at least $\$ 350$ in revenue to cover the cost of camp. Create the inequality.
- both quantities vary $=\$ 2$ per $b \& \$ 23$ per n
- Let $b=$ bracelet \& $n=$ necklace
- at least \rightarrow greater than or equal to \geq

$$
2 b+23 n \geq 350
$$

Tips for Systems of Equations
step 1: Define your variables
Step 2: Write 2 linear equations - one most likely will be explicitly read in problem \& the other may be implicit in the problem.
step 3: Solve the system of equation appropriately (usually elimination is the most efficient)
[Example] An exam contains 50 questions. Some questions are worth two points and some are worth five points with a total of 145 points on the exam. Crate the system.

- Let x be 2 -point questions \& let y be 5 -point questions.

$$
\begin{gathered}
2 x+5 y=145 \\
x+y=50
\end{gathered}
$$

How many 2 -point \& 5 -point questions are on the test?

$$
\begin{array}{r}
2 x+5 y=145 \\
-2(x+y=50)
\end{array} \rightarrow \begin{array}{r}
2 x+5 y=145 \\
\frac{-2 x-2 y=-100}{\frac{3 y}{3}=\frac{45}{3}}
\end{array} \quad \begin{array}{r}
\text { Sub } 15 \text { for } y: \\
x+15=50 \\
x=35
\end{array}
$$

Tips for Systems of linear Inequalities

- very similar to creating Linear Systems, except solving will most likely involve shading.
[Example] Pete is fishing in a lake for salmon \& trout. You can sell the salmon for $\$ 3$ each \& trout for $\$ 5$ each. Regulations say that you can't catch more than 15 fish a day, and you can t catch more than $\$ 55$ of fish a day. Create the system of inequality
- Let $s=$ salmon \& $t=$ trout .

$$
\begin{gathered}
3 x+5 y \leq 55 \\
x+y \leq 15
\end{gathered}
$$

