2.13 Real World Applications

For Linear Equations, Inequalities, Systems & Functions

Standards: A.REI.3 F.IF.5 A.CED.1 A.CED.2 A.CED.3 F.BF.1

Tips for creating linear Functions:

Step 1: determine what is the quantity that varies—that's the variable, and what is the quantity that will remain the same—that's the constant.

Step 2: denote what is the independent variable (x) and what is the dependent variable (f(x))

Step 3: Create the function: (i.e.) Dep. Var = Ind var + constant $f(x) = m \times + c$

[Example] Ahmed has a saving's plan. His parent's will give him \$250 to start his investment and add \$50 each month. Model this

step 4: Answer the question appropriately.

quantity that varies = \$50 per month

quantity remaining the same = \$250

Let x = month and f(x) = total amount.

$$f(x) = 50x + 250$$

How much does Ahmed have in his savings account after 3 months? ×=3

$$f(3) = 50(3) + 250$$
= \$400.

This was created by Keenan Xavier Lee, 2015. See my website for more information, lee-apcalculus.weebly.com.

How r	nany Savin	mon 95 a	ths Cuoni	will nt?	Ahmed	l have	to	wait	ij	he	wan	ts s	‡ II5	0 in	
	()= [[
E	f(x) = 50 = . 50	50x	+25	50											
18m	900 = 10nths	50×													
Tips	s for	crea	atin	g Liv	near l	hequa	litie	25							
					ng Lin Shadi	T					, 50h	ling	will		
• Bx	e far	niliai	r Wi	th la	inghai	je lik	ce:	ample Han	2S)	laa	ر ما				
	• 9	reati	er t	an :		> mo	re t	han,	ex vs	we Lee	ds,	A:		1	,
					> equal equal				at at	lea	st, M St, h	ninim	IWM V	alne o Value i) 년
	_	1 A A .	1		11.						^		_	1 1	

[Example] Michelle is selling jewelry to earn money for camp. Bracelets sell for \$23 and she needs to make at least \$350 in revenue to cover the cost of camp. Create the inequality.

• both quantities vary = \$2 per b & \$23 per n

This was created by Keenan Xavier Lee, 2015. See my website for more information, lee-apcalculus.weebly.com.

Let b=bracelet & n=necklace
at least → greater than or equal to ≥ $2b + 23n \ge 350$

Tips for Systems of Equations Step 1: Define your variables

step 2: Write 2 linear equations — one most likely will be explicitly read in problem & the other may be implicit in the problem. step3: Solve the system of equation appropriately (usually elimination is the most efficient)

[Example] An exam contains 50 questions. Some questions are worth two points and some are worth five points with a total of 145 points on the exam. Greate the system.

• Let x be 2-point questions & let y be 5-point questions.

$$2x + 5y = 145$$

$$x + y = 50$$

How many 2-point & S-point questions are on the test?

$$2x + 5y = 145 \longrightarrow 2x + 5y = 145 Sub 15 \text{ for } y:$$

$$-2(x + y = 50) \longrightarrow -2x - 2y = -100$$

$$3y = 45 \times + 15 = 50$$

$$x = 35$$

x = 35This was created by Keenan Xavier Lee, 2015. See my website for hore information, point ques.)

x + 15 = 50

Tips for Systems of linear Inequalities

 very similar to creating linear Systems, except solving will most likely involve shading.

[Example] Pete is fishing in a lake for salmon & trout. You can sell the salmon for \$3 each & trout for \$5 each. Regulations say that you can't catch more than 15 fish a day, and you can't catch more than \$55 of fish a day. Create the system of inequality

· Let s = salmon & t = trout.

3x+5u	<u> </u>	֡
х+й	< 15	