2.1 Estimating Tangent Lines
\qquad
\qquad
\qquad
This was created by Keenan Xavier Lee, 2013. See my website for more information, lee-apcalculus.weebly.com.

Old Secant lines
What is a secant line? A secant line is is a line passing through 2 points on a curve.

secant lines give average rate of change.
[Example] Find the slope of the secant line of $y=x^{3}$ on the interval $[1,3]$

$$
\begin{aligned}
\text { Slope } & =m=\frac{\text { rise }}{\text { run }}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{f\left(x_{2}\right)-f\left(x_{1}\right)}{x_{2}-x_{1}} \\
& =\frac{27-1}{3-1}=13
\end{aligned}
$$

What is the equation of the secant line? $y=m x+b \Rightarrow$ What do $k n w w$?

$$
\begin{array}{ll}
1 & =13(1)+b \\
1 & =13+b \\
-12 & =b .
\end{array} \quad y=13 x-12
$$

new Tangent Lines
What is a tangent line? A tangent line is a line that touches the graph in one local point.

tangent lines give instantaneous rove of change.

Tangent Lines

- Tangent lines are instantaneous rate of change.
- It's a better way. to study. the exact behanor of graphs al every little section \& point.
- Think of it as an easy "snapshot" of what is going on in the function.

This was created by Keenan Xavier Lee, 2013. See my website for more information, lee-apcalculus.weebly.com.

Relationship between Secant \& Tangent Lines
As the secant lines approaches the tangent lines, the secant unes eventually converges into the tangent line

The gradual jump from average to instantaneous requires the limit notion.

Tangent line at $x-a \cdot \frac{f(a+h)-f(h)}{h} \Rightarrow \lim _{h \rightarrow 0} \frac{f(h+h)-f(a)}{h}$
(Exampl ed) let's consider the graph of $y=x^{2}+5$. Find the instantaneous
rate of change of $x=2$ rate of change of $x=2$.

At $x=2$, the slope of the tangent line is 4 .
[Example 2] Estimate the slope at point $(1,2)$ to $f(x)=2 x^{3}-x+1$.
[Exampl es] A stone is released form a state of rest falling to Earth. let the function describing the sinuation be $f(t)=16 t^{2}$. Estimate the shape of the tangent line at $t=0.5$ seconds.

