2.3 Derivatives

Using Limits
Standards:
MCD1a
MCD1 b
MCD1c

Old Calculating Tangent Lines
To find the slopes of tangent lines, we could use the following formula:

$$
m=\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h} \text {, if limit exists. }
$$

Find the ROC at $x=1$ for $f(x)=4-x^{2}$.

$$
\begin{aligned}
& m=\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h} \\
& =\lim _{h \rightarrow 0} \frac{f(1+h)-f(1)}{h} \\
& =\lim _{h \rightarrow 0} \frac{\left[4-(1+h)^{2}\right]-[3]}{h} \\
& =\lim _{h \rightarrow 0} \frac{\left[4-\left(1+2 h+h^{2}\right)\right]-[3]}{h} \\
& =\lim _{h \rightarrow 0} \frac{4-1-2 h-h^{2}-3}{h} \\
& =\lim _{h \rightarrow 0} \frac{-2 h-h^{2}}{h} \\
& =\lim _{h \rightarrow 0} \frac{h(-2-h)}{h} \\
& =\lim _{h \rightarrow 0}-2-h \\
& =-2-(u)=-2 \\
& =\lim _{\substack{h \rightarrow 0 \\
\text { This was created by keenandaver Lee, 2013. See my }}} \frac{3-2 h-h^{2}-\beta}{h_{a^{2}}}
\end{aligned}
$$

new Derivatives

- are a way to measure the IROC of a function at any point
- gives us a function of x at any given point $p(x, f(x))$ which we will notate as $f^{\prime}(x) \rightarrow \rightarrow^{\prime} f$ prime of
-This "new" function gives the slope of the tangent line to the graph of f at the point $(x, f(x)$), provided that the graph has a tangent line at this point.

Definition
The derivative of f at x is given by

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h},
$$

provided that the limit exists. For all of (x) for which this limit exists, f^{\prime} is the function of x.

Other notations for derivenves:

[Example 1] Find the derivative of $f(x)=4-x^{2}$.

$$
\begin{aligned}
f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{\left[4-(x+h)^{2}\right]-\left[4-x^{2}\right]}{h} \\
& =\lim _{h \rightarrow 0} \frac{\left[4-\left(x^{2}+2 x h+h^{2}\right)\right]-\left[4-x^{2}\right]}{h} \\
& =\lim _{h \rightarrow 0} \frac{4-x^{2}-2 x h-h^{2}-4+x^{2}}{h} \\
& =\lim _{h \rightarrow 0} \frac{-2 x h-h^{2}}{h} \\
& =\lim _{h \rightarrow 0} \frac{k(-2 x-h)}{h} \\
& =\lim _{h \rightarrow 0}-2 x-h \\
& =-2 x-(0) \\
& =-2 x .
\end{aligned}
$$

The derivative of $f(x)=4-x^{2}$ is $f^{\prime}(x)=2 x$.

How can I use the derivative to get the slopes of tangent lines?

$$
\begin{aligned}
& f(x)=4-x^{2} \\
& f^{\prime}(x)=-2 x
\end{aligned}
$$

- Find the $I R O C$ at $x=1$. Find the $\mathbb{R V C}$ at $x=3$

$$
f^{\prime}(2)=-2(1)=-2 \quad f^{\prime}(3)=-2(3)=-6
$$

conclusion we can Now we the derivative of that function, to find the slopes of tangent lines ($\mathbb{R O C}$) at any x-Value, provided the slope of the tangent lune exist at the indicated x-value.
[Example 2] Find $\frac{d y}{d x}$ for $f(x)=2 x^{2}$.
[Example 3] Find the slopes of the tangent each indicated point of the function: $f(x)=\sqrt{x}$.
(a) $x=3$
(b) $x=S$
(c) $x=7$
(d) $x=2$
[Example 4] What is the derivative of $f(x)=3 x^{3}$.
[Example 5] $\frac{d y}{d x}(\sqrt{1+x})=$?
[Example 6] Find the equation of the tangent lines
foreach of these slopes in Example 3.
[Example 2] $\frac{d y}{d x}\left(2 x^{2}\right)=$?

$$
\begin{aligned}
& m=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\
&=\lim _{h \rightarrow 0} \frac{\left[2(x+h)^{2}\right]-\left[2 x^{2}\right]}{h} \\
&=\lim _{h \rightarrow 0} \frac{\left[2\left(x^{2}+2 x h+h^{2}\right)\right]-\left[2 x^{2}\right]}{h} \\
&=\lim _{h \rightarrow 0} \frac{\left[2 x^{2}+4 x h+2 h^{2}\right]-\left[2 x^{2}\right]}{h} \\
&=\lim _{h \rightarrow 0} \frac{2 x^{2}+4 x h+2 h^{2}-2 x^{2}}{h} \\
&=\lim _{h \rightarrow 0} \frac{4 x h+2 h^{2}}{h} \\
&=\lim _{h \rightarrow 0} \frac{h(4 x+2 h)}{h} \\
&=\lim _{h \rightarrow 0} 4 x+2 h=4 x+2(0) \\
&=4 x
\end{aligned}
$$

$\left[\right.$ Example 3] $f(x)=\sqrt{x} ; f^{\prime}(x)=$?

$$
\begin{aligned}
& m=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\
& =\lim _{h \rightarrow 0}^{\prime} \frac{\sqrt{x+h}-\sqrt{x}}{h} \cdot \frac{\sqrt{x+h}+\sqrt{x}}{h}
\end{aligned}
$$

$$
=\lim _{10}(x+h)-(x)
$$

$$
\text { hoso } \frac{h(\sqrt{x+h}+\sqrt{x})}{}
$$

$$
=\lim _{h \rightarrow 0} \frac{x+h-k}{1}
$$

(a) $f^{\prime}(3)=\frac{1}{2 \sqrt{3}}$

$$
\lim _{h \rightarrow 0} \quad h(\sqrt{x+h}+\sqrt{x}
$$

$$
=\lim _{h \rightarrow \infty} h
$$

$$
\lim _{h \rightarrow 0} \frac{n}{\sqrt{h} \sqrt{x+h}+\sqrt{x}}
$$

(b) $f^{\prime}(5)=\frac{1}{2 \sqrt{5}}$

$$
=\lim _{h \rightarrow 0} \frac{1}{\sqrt{x+h}+\sqrt{x}}
$$

(c) $f^{\prime}(7)=\frac{1}{2 \sqrt{7}}$

$$
\begin{aligned}
& =\frac{1}{\sqrt{x+0}+\sqrt{x}} \\
& =\frac{1}{\sqrt{x}+\sqrt{x}} \\
& -1
\end{aligned}
$$

(d) $f^{\prime}(2)=\frac{1}{2 \sqrt{2}}$
[Example 4] $y=3 x^{3}$. What is y^{\prime} ?

$$
\begin{aligned}
f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{\left[3(x+h)^{3}\right]-\left[3 x^{3}\right]}{h} \\
& =\lim _{h \rightarrow 6} \frac{\left[3\left(x^{3}+3 x^{2} h+3 x h^{2}+h^{3}\right)\right]-\left[3 x^{3}\right]}{h} \\
& =\lim _{h \rightarrow 0} \frac{3 x^{3}+3 x^{2} h+3 x h^{2}+h^{3}-3 x^{3}}{h} \\
& =\lim _{h \rightarrow 0} \frac{3 x^{2} h+3 x h^{2}+h^{3}}{h} \\
& =\lim _{h \rightarrow 0} \frac{\hbar\left(3 x^{2}+3 x h+h^{2}\right)}{h} \\
& =\lim _{h \rightarrow 0} 3 x^{2}+3 x h+h^{2} \\
& =3 x^{2}+3 x(0)+(0)^{2} \\
& =3 x^{2}
\end{aligned}
$$

