1. Given: $\overline{W X} \cong \overline{Y X}, \mathrm{Z}$ is the midpoint of $\overline{W Y}$

Prove: $\triangle \mathrm{WXZ} \cong \triangle \mathrm{YXZ}$

Place the following items in as one of the reasons below:
Given
Definition of a midpoint
Given
Reflexive Property
SSS Congruence Postulate

Statements	Reasons
1) $\overline{W X} \cong \overline{Y X}$	
2) Z is the midpoint of $\overline{W Y}$	
3) $\overline{W Z} \cong \overline{Z Y}$	
4) $\overline{X Z} \cong \overline{X Z}$	
5) $\Delta \mathrm{WXZ} \cong \triangle \mathrm{YXZ}$	

2. Using the two column proof above in \#1, write a paragraph proof to Prove: $\triangle \mathrm{WXZ} \cong \triangle \mathrm{YXZ}$
3. Given: B is the midpoint of $\overline{A E}, \mathrm{~B}$ is the midpoint of $\overline{C D}$

Prove: $\triangle \mathrm{ABD} \cong \triangle \mathrm{EBC}$

Place the following items in as one of the statements or reasons below:
Given
$\overline{A B} \cong \overline{E B}$
Given
$\overline{B D} \cong \overline{B C}$
Vertical Angles are Congruent

SAS Congruence Postulate

Statements	Reasons
1) B is the midpoint of $\overline{A E}$	
2)	Definition of Midpoint
3) B is the midpoint of $\overline{C D}$	
4)	Definition of Midpoint
5) $<\mathrm{ABD} \cong<\mathrm{EBC}$	
6) $\triangle \mathrm{ABD} \cong \triangle \mathrm{EBC}$	

1. Given: $\overline{W X} \cong \overline{Y X}, \mathrm{Z}$ is the midpoint of $\overline{W Y}$

Prove: $\triangle \mathrm{WXZ} \cong \triangle \mathrm{YXZ}$
Place the following items in as one of the reasons below:
Given
Definition of a midpoint
Given
Reflexive Property
SSS Congruence Postulate

Statements	Reasons
1) $\overline{W X} \cong \overline{Y X}$	Given
2) Z is the midpoint of $\overline{W Y}$	Given
3) $\overline{W Z} \cong \overline{Z Y}$	Definition of a midpoint
4) $\overline{X Z} \cong \overline{X Z}$	Reflexive Property
5) $\Delta \mathrm{WXZ} \cong \triangle \mathrm{YXZ}$	SSS Congruence Postulate

2. Using the two column proof above in \#1, write a paragraph proof to Prove: $\triangle \mathrm{WXZ} \cong \triangle \mathrm{YXZ}$

It is given that $\overline{W X}$ is congruent to $\overline{Y X}$ and that Z is the midpoint of $\overline{W Y}$. Therefore based on the definition of a midpoint, point Z bisects $W Y$ into two equal parts. Therefore $\overline{W Z}$ is congruent to $\overline{Z Y}$. In addition $\overline{X Z}$ is congruent to $\overline{X Z}$ as the line is shared with both triangles, therefore using the reflexive property the line is congruent. Therefore using the Side-Side-Side Congruence Postulate, it can be determined that $\triangle W X Z$ is congruent $\triangle Y X Z$ as three sides of one triangle is congruent to three corresponding sides of the other triangle.
3. Given: B is the midpoint of $\overline{A E}, \mathrm{~B}$ is the midpoint of $\overline{C D}$

Prove: $\triangle \mathrm{ABD} \cong \triangle \mathrm{EBC}$
Place the following items in as one of the statements or reasons below:
Given
$\overline{A B} \cong \overline{E B}$
Given
$\overline{B D} \cong \overline{B C}$
Vertical Angles are Congruent

SAS Congruence Postulate

Statements	Reasons
1) B is the midpoint of $\overline{A E}$	Given
2) $\overline{A B} \cong \overline{E B}$	Definition of Midpoint
3) B is the midpoint of $\overline{C D}$	Given
4) $\overline{B D} \cong \overline{B C}$	Definition of Midpoint
5) $<\mathrm{ABD} \cong<\mathrm{EBC}$	Vertical Angles are Congruent
6) $\triangle \mathrm{ABD} \cong \triangle \mathrm{EBC}$	SAS Congruence Postulate

Classwork 2.4 Proofs (Page 2)

4. Given: $\angle 1$ and $\angle 2$ are supplementary. $\angle 2 \cong \angle 3$

Prove: $\angle 1+\angle 3=180^{\circ}$

Statements	Reasons
1$)$	
2$)$	
3$)$	
4$)$	

5. Given: The top line is running parallel to the base of the triangle.

Prove: $\angle 1+\angle 2+\angle 3=180^{\circ}$

Statements	Reasons
1)	
2$)$	
3$)$	
4$)$	
5$)$	

6. Given: $\angle \mathrm{NLM} \cong \angle \mathrm{LNO}$ and $\angle \mathrm{OLN} \cong \angle \mathrm{MNL}$

Prove: $\angle \mathrm{M} \cong \angle 0$

Statements	Reasons
1)	
2)	
3$)$	
4$)$	
5)	

7. Given: $\angle \mathrm{AFB}$ is complementary to $\angle \mathrm{BFC}$.
$\angle \mathrm{EFD}$ is complementary to $\angle \mathrm{DFC} . \angle \mathrm{BFC} \cong \angle \mathrm{DFC}$
Prove: $\angle \mathrm{AFB} \cong \angle \mathrm{EFD}$

Statements	Reasons
1)	
2)	
35	
4$)$	
5$)$	
6$)$	
7$)$	
8$)$	

8. Using the two column proof above in \#7, write a paragraph proof to Prove: $\angle \mathrm{AFB} \cong \angle \mathrm{EFD}$
4. Given: $\angle 1$ and $\angle 2$ are supplementary. $\angle 2 \cong \angle 3$

Prove: $\angle 1+\angle 3=180^{\circ}$

Statements	Reasons
1) $\angle 1$ and $\angle 2$ are supplementary	Given
2) $\angle 1+\angle 2=180^{\circ}$	Definition of Supplementary angles
3) $\angle 2 \cong \angle 3$	Given
4) $\angle 1+\angle 3=180^{\circ}$	Substitution

5. Given: The top line is running parallel to the base of the triangle.

Prove: $\angle 1+\angle 2+\angle 3=180^{\circ}$

Statements	Reasons
1) Top line parallel to base of triangle	Given
2) $\angle 4 \cong \angle 1$	Alternate Interior Angles
3) $\angle 5 \cong \angle 2$	Alternate Interior Angles
4) $\angle 4+\angle 5+\angle 3=180^{\circ}$	Definition of straight angle
5) $\angle 1+\angle 2+\angle 3=180^{\circ}$	Substitution

6. Given: $\angle \mathrm{NLM} \cong \angle \mathrm{LNO}$ and $\angle \mathrm{OLN} \cong \angle \mathrm{MNL}$

Prove: $\angle \mathrm{M} \cong \angle 0$

Statements	Reasons
1) $\angle \mathrm{NLM} \cong \angle \mathrm{LNO}$	Given
2) $\angle \mathrm{OLN} \cong \angle \mathrm{MNL}$	Given
3) $\overline{L N} \cong \overline{L N}$	Reflexive Property
4) $\triangle \mathrm{NLM} \cong \triangle \mathrm{LNO}$	ASA Congruence Postulate
5) $\angle \mathrm{M} \cong \angle \mathrm{O}$	CPCTC

7. Given: $\angle \mathrm{AFB}$ is complementary to $\angle \mathrm{BFC}$.
$\angle \mathrm{EFD}$ is complementary to $\angle \mathrm{DFC} . \angle \mathrm{BFC} \cong \angle \mathrm{DFC}$
Prove: $\angle \mathrm{AFB} \cong \angle \mathrm{EFD}$

Statements	Reasons
1) $\angle \mathrm{AFB}$ is complementary to $\angle \mathrm{BFC}$	Given
2) $\angle \mathrm{AFB}+\angle \mathrm{BFC}=90^{\circ}$	Definition of complementary angles
3) $\angle \mathrm{EFD}$ is complementary to $\angle \mathrm{DFC}$	Given
4) $\angle \mathrm{EFD}+\angle \mathrm{DFC}=90^{\circ}$	Definition of complementary angles
5) $\angle \mathrm{BFC} \cong \angle \mathrm{DFC}$	Given
6) $\angle \mathrm{EFD}+\angle \mathrm{BFC}=90^{\circ}$	Substitution
7) $\angle \mathrm{AFB}+\angle \mathrm{BFC}=\angle \mathrm{EFD}+\angle \mathrm{BFC}$	Transitive Property
8) $\angle \mathrm{AFB} \cong \angle \mathrm{EFD}$	Substitution

8. Using the two column proof above in \#7, write a paragraph proof to Prove: $\angle \mathrm{AFB} \cong \angle \mathrm{EFD}$ DFC which means that these pairs add to 90 degrees. In addition, it is given that angle BFC is congruent to angle DFC. Therefore by using substitution you can replace angle DFC with BFC and then using the Transitive Property which says if the sum of angle EFD and angle BFC equal 90 degrees then angle the sum of angle AFB and BFC are also equal to the sum of angle EFD and angle BFC then $\angle \mathrm{AFB} \cong \angle \mathrm{EFD}$.

This was created by Keenan Xavier Lee \& Roxann Crawford - 2014. See my website for more information, lee-apcalculus.weebly.com

