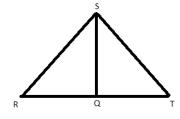
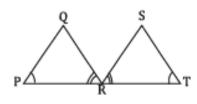

Homework 2.4 Proofs

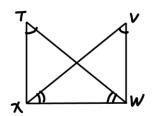
1. Given: $\angle T \cong \angle V$, $\angle TWX \cong \angle VXW$


Statement	Reason	
1.	1.	
2.	2.	
3.	3. Reflexive Property	
4. $\Delta TWX \cong \Delta VXW$	4.	

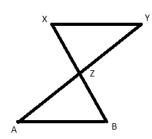
2. Given: $\overline{XY} \mid \mid \overline{AB}$, Z is the midpoint of \overline{AY}


Statement	Reason
1. $\overline{XY} \mid \mid \overline{AB}$	1.
2.	2.
3.	3.
4. Z is the mdpt. of \overline{AY}	4.
5.	5.
$6. \Delta XYZ \cong \Delta BAZ$	6.

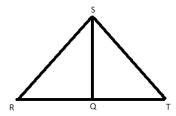
3. Given: $\overline{SQ} \perp \overline{RT}$, \overline{QS} bisects $\angle RST$


Statement	Reason
1.	1.
2. $\angle RQS$ and $\angle TQS$ are rt. angles	2.
3.	3. Right angle congruence
4.	4.
5.	5.
6.	6.
$7. \Delta RSQ \cong \Delta TSQ$	7.

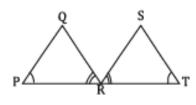
4. Given: R is the midpoint of \overline{PT} , $\angle P \cong \angle T$, $\angle PRQ \cong \angle TRS$


Statement	Reason
1.	1.
2.	2.
3.	3.
4.	4.
5. \triangle PRQ \cong \triangle TRS	5.

1. Given: $\angle T \cong \angle V$, $\angle TWX \cong \angle VXW$

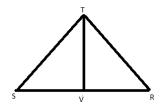

Statement	Reason	
1. ∠T ≅ ∠V	1. Given	
2. ∠T <i>WX</i> ≅ ∠VXW	2. Given	
$3. \overline{WX} \cong \overline{XW}$	3. Reflexive Property	
4. $\Delta TWX \cong \Delta VXW$	4. AAS	

2. Given: $\overline{XY} \mid \mid \overline{AB}$, Z is the midpoint of \overline{AY}

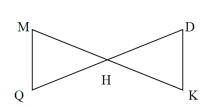

Statement	Reason
1. $\overline{XY} \mid \mid \overline{AB}$	1. Given
2. ∠X ≅ ∠B	2. Alternate Interior angles
3. ∠A ≅ ∠Y	3. Alternate Interior angles
4. Z is the mdpt. of \overline{AY}	4. Given
$5.\overline{YZ} \cong \overline{AZ}$	5.Definition of a midpoint
$6. \Delta XYZ \cong \Delta BAZ$	6. AAS

3. Given: $\overline{SQ} \perp \overline{RT}$, \overline{QS} bisects $\angle RST$

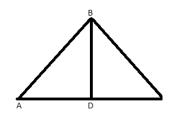
Statement	Reason	
$1.\overline{SQ} \perp \overline{RT}$	1. Given	
2. $\angle RQS$ and $\angle TQS$ are rt. angles	2. ⊥ lines form rt. angles	
3. ∠RQS ≅ ∠TQS	3. Right angle congruence	
$4\overline{QS}$ bisects \angle RST	4. Given	
5. ∠RSQ ≅ ∠TSQ	5. Definition of angle bisector	
$6.\overline{SQ}\cong\overline{SQ}$	6. Reflexive Property	
7. \triangle RSQ \cong \triangle TSQ	7. ASA	


4. Given: R is the midpoint of \overline{PT} , $\angle P \cong \angle T$, $\angle PRQ \cong \angle TRS$

Statement	Reason	
1. R is the midpoint of \overline{PT}	1. Given	
$2. \overline{PR} \cong \overline{RS}$	2. Definition of midpoint	
3. ∠P ≅ ∠T	3. Given	
4. ∠PRQ ≅ ∠TRS	4. Given	
$5. \Delta PRQ \cong \Delta TRS$	5. ASA	


Homework 2.4 Proofs (Page 2)

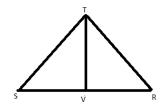
5. Given: VT bisects \angle STR, $\overline{ST} \cong \overline{TR}$


Statement	Reason
1.	1.
2.	2.
3.	3.
4.	4.
5.	5.
6. ∠ <i>SVT</i> ≅ ∠ <i>RVT</i>	6.

6. Given: H is the midpoint of \overline{MK} and \overline{QD} .

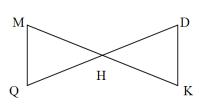
<u>Statement</u>	Reason
1.	1.
2.	2.
3.	3.
4.	4.
5. ΔQMH ≅ ΔDKH	5.

7. Given: $\overline{BD} \perp \overline{AC}$, D is the midpoint of \overline{AC}

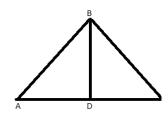

Statement	Reason
1.	1.
2.	2.
3.	3.
4.	4.
5.	5.
6.	6.
7. $\triangle ADB \cong \triangle CDB$	7.

8. What is the missing reason in the proof? Given: Parallelogram ABCD with diagonal \overline{BD} . Prove: $\triangle ABD \cong \triangle CDB$

Statements	Reasons	
1. $\overline{AD} \parallel \overline{BC}$	1. Definition of parallelogram	$A \nearrow B$
	2. Alternate Interior Angles Theorem3. Definition of parallelogram	
$5. \overline{DB} \cong \overline{DB}$	4. Alternate Interior Angles Theorem5. Reflexive Property of Congruence6. ?	D C


- a) Transitive Property of Equality
- b) SAS Congruence Postulate
- c) SSS Congruence Postulate
- d) ASA Congruence Postulate

5. Given: VT bisects \angle STR, $\overline{ST} \cong \overline{TR}$


Statement	Reason
1. VT bisects ∠STR	1.Given
2. ∠STV ≅ ∠RTV	2. Definition of angle bisector
$3.\overline{ST} \cong \overline{TR}$	3. Given
$4.\overline{VT}\cong\overline{VT}$	4. Reflexive Property
$5. \triangle SVT \cong \triangle RVT$	5. SAS
6. ∠ <i>SVT</i> ≅ ∠ <i>RVT</i>	6. CPCTC

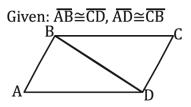
6. Given: H is the midpoint of \overline{MK} and \overline{QD} .

Statement	Reason
1. H is the midpoint of \overline{MK} and \overline{QD}	1. Given
$2. \overline{MH} \cong \overline{KH}$	2. Definition of Midpoint
$3. \overline{QH} \cong \overline{DH}$	3. Definition of Midpoint
4. ∠QHM ≅ ∠DHK	4. Vertical angles are congruent
5. ΔQMH ≅ ΔDKH	5. SAS

7. Given: $\overline{BD} \perp \overline{AC}$, D is the midpoint of \overline{AC}

Statement	Reason
1. $\overline{BD} \perp \overline{AC}$	1. Given
2. ∠ADB and ∠CDB are rt. angles	2. ⊥ lines form rt. angles
3. ∠ADB ≅ ∠CDB	3. Right angle congruence
4. D is the midpoint of \overline{AC}	4. Given
$5. \overline{AD} \cong \overline{DC}$	5. Definition of midpont
$6. \overline{DB} \cong \overline{DB}$	6. Reflexive Property
7. $\triangle ADB \cong \triangle CDB$	7. SAS

8. What is the missing reason in the proof? Given: Parallelogram ABCD with diagonal \overline{BD} . Prove: $\triangle ABD \cong \triangle CDB$

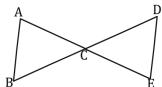

Statements	Reasons	<u></u>
1. $\overline{AD} \parallel \overline{BC}$	1. Definition of parallelogram	$\overline{}$
2. <u>∠ADB</u> ≅ ∠CBD	2. Alternate Interior Angles Theorem	
3. $\overline{AB} \parallel \overline{CD}$	3. Definition of parallelogram	
4. <u>∠ABD ≅</u> ∠CDB	4. Alternate Interior Angles Theorem	
$5. DB \cong DB$	5. Reflexive Property of Congruence	D C
6. $\triangle ABD \cong \triangle CDB$	6. ?	

- b) Transitive Property of Equality
- b) SAS Congruence Postulate
- d) SSS Congruence Postulate
- d) ASA Congruence Postulate

Homework 2.4 Proofs (Page 3)

Find the mistake(s) in the given proofs.

9.

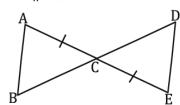


Prove: △ABD≅△CDB

Statements	<u>Reasons</u>
1. AB≅CD	1. Given
2. AD≅CB	2. Given
3. BD≅BD	3. Vertical Angles
4. ΔABD≅ΔCDB	4. SSS

10.

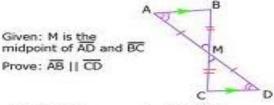
Given: \overline{AE} Bisects \overline{BD} , $\angle B \cong \angle D$



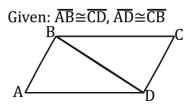
Prove: △ABC≅△DBC

Statements	Reasons
1.∠B≅∠D	1. Given
2. \overline{AC} Bisects \overline{BD}	2. Given
3. AC ≅ CE	3. Definition of Bisect
4.∠ACB≅∠DCE	4. Vertical angles
5. △ABC≅△DBC	5. SAS

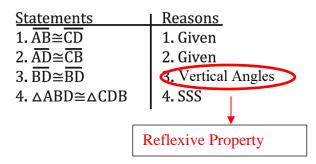
11.


Given $\overline{AB} \parallel \overline{ED}$, $\overline{AC} \cong \overline{EC}$

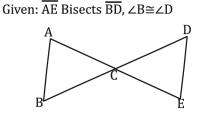
Prove: △ABC≅△EDC

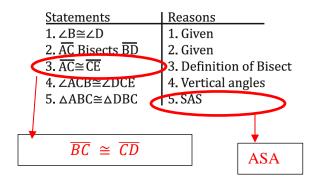

Statements	Reasons
1. AB ED	1. Given
2. AC ≅ EC	2. Given
3.∠A≅∠D	3. Alternate Interior angles
4. ∠ACB≅∠DCE	4. Vertical angles
5. △ABC≅△DBC	5. A AS

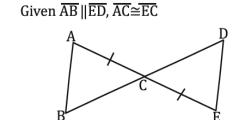
12.

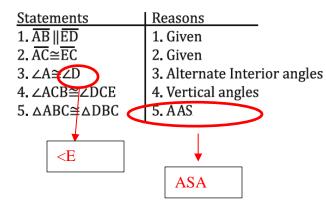


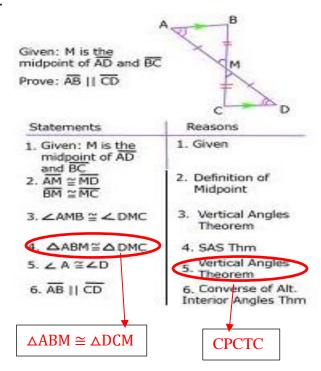
Statements	Reasons
Given: M is the midpoint of AD and BC	1. Given
2. AM ≅ MD BM ≅ MC	Definition of Midpoint
 ∠AMB ≅ ∠ DMC 	Vertical Angles Theorem
 △ABM≅△DMC 	4. SAS Thm
5. ∠ A ≅∠D	 Vertical Angles Theorem
6. AB CD	Converse of Alt. Interior Angles Thm




Prove: △ABD≅△CDB


10.


Prove: △ABC≅△DBC



Prove: △ABC≅△EDC

12.

