2.4 Derivative Applications

Standards:	
MCD1c	
MCD1e	
	_1

old Slopes of tangent line To find the slope of the tangent of a function at one point, one must: 1. Find the derivative of the function 2. Substitute the point into the derivative. Thew Derivative Applications Velocity/Acceleration Relative to Denvative Let's call the initial function, f(x) -> the "position function". Velocity is the speed & direction of an object.

The rate of change of the position function is the velocity function. —> which is the derivative of the position function, f'(x). note: velocity is positive (forward) relocity is negative (backward) Acceleration is the rate at which an object speeds up & The rate of charge of the velocity funding is the aceleration function -> Which is the demative of relocity, f"(x).

This was created by Keenan Xavier Lee, 2013. See my website for more information, lee-apcalculus.weebly.com. note: acceleration is positive (speeding up), acceleration is negative (slowing down)

[Summary] $f(x) \longrightarrow position function \longrightarrow p(x).$ $f'(x) \longrightarrow velocity function \longrightarrow V(x)$ $f''(x) \longrightarrow acceleration function \longrightarrow a(x).$