2.6 Chain Rule

Standards:
 MCD2
 MCD2 a

Old Composition of Functions
Let's consider the functions: $f(x)=2 x+1$ and $g(x)=x^{3}$. Perform the following tasks.
(1) $f \circ g(x)=f(g(x))=2\left(x^{3}\right)+1=2 x^{3}+1$
(2) $g \circ f(x)=g(f(x))=(2 x+1)^{3}$
(3) $f \circ f(x)=f(f(x))=2(2 x+1)+1=4 x+2+1=4 x+3$
(4) $g \circ g(x)=g(g(x))=\left(x^{3}\right)^{3}=x^{9}$

Are any of the following functions a composition of functions. If so, state the composition.
(1) x^{3}
no
(2) $\left(x^{2}+5\right)^{3}$

$$
\begin{aligned}
& f(x)=x^{2}+s \\
& g(x)=x^{3}
\end{aligned}
$$

(5) $\cos ^{3} x$
$(\text { rewrite })^{3}$ $=(\cos x)^{3}$ $f(x)=\cos x$ $g(x)=x^{3}$
(6) $\frac{1}{\left(t^{4}+1\right)^{3}}$ $f(x)=\frac{1}{x^{3}}$ $g(x)=t^{4}+1$
(4) $\sin (4 x)$

$$
\begin{aligned}
& f(x)=\sin (x) \\
& g(x)=4 x
\end{aligned}
$$

(7) $\tan (\sin x)$
(8) $\cos (n x)$ $f(x)=\tan x$
$f(x)=n x$ $g(x)=\sin x$ $g(x)=n x$
new Chain Rule
We've been able to find derivatives of functions such as $f(x)=x^{2}$ \& $g(x)=\sin (x)$. However, what if we wanted to differentiate such functions like $f(x)=\sqrt{x^{2}+1}$ and $g(x)=\left(x^{3}+\tan x\right)^{2 t}$?
We need a technique to help us determine the derivative of the composition of functions.
Let's note...
Since functions $f(x)=\sqrt{x^{2}+1} \& g(x)=\left(x^{3}+\tan x\right)^{76}$ are compositions, we canuse a technique called the chain rule.

Let's consider $K(x)=f(g(x))$. Find the denvative.
$\frac{d K(x)}{d x} \Rightarrow$ need to find derivative.

$$
\begin{aligned}
& \frac{d K(x)}{d x} \cdot \frac{d g(x)}{g(x)}=\frac{d K(x)}{d g(x)} \cdot \frac{d g(x)}{d x}=\frac{d f(g(x))}{d g(x)} \cdot \frac{d g(x)}{x} \\
& =f^{\prime}(g(x)) \cdot g^{\prime}(x)
\end{aligned}
$$

CHAIN RULE

$$
\begin{aligned}
& \frac{d}{d x}[f(g(x))]={\underset{\uparrow}{f}}_{f^{\prime}(g(x)) \cdot \underbrace{g^{\prime}(x)}_{\uparrow}) .}^{x} \\
& \begin{array}{l}
\text { derivative derivative } \\
\text { of the the }
\end{array} \\
& \begin{array}{l}
\text { of the of the } \\
\text { outside ins }
\end{array}
\end{aligned}
$$

$$
\frac{d}{d x}[f(g(x))]=f^{\prime}(g(x)) \cdot g^{\prime}(x)
$$

What is the outside \& inside function of $f(x)=\sqrt{x^{2}+1}$ \& $g(x)=\left(x^{3}+\tan x\right)^{76}$? outside function: $f(x)=\sqrt{x}$
[a] $f(x)=\sqrt{x^{2}+1}$
inside function: $g(x)=x^{2}+1$
(b) $g(x)=\left(x^{3}+\tan x\right)^{76}$ outside function: $f(x)=x^{76}$ inside function: $g(x)=x^{3}+\tan x$
[Examples] Find the derivatives of the functions.
(2) f

$$
\begin{aligned}
& f(x)=\left(x^{3}+\tan x\right)^{76} \\
& f^{\prime}(x)=76\left(x^{3}+\tan x\right)^{35} \cdot\left(3 x^{2}+\sec ^{2} x\right)
\end{aligned}
$$

(2)

$$
\begin{aligned}
f(x) & =\sqrt{x^{2}+1} \text { Rewrite }=\left(x^{2}+1\right)^{1 / 2} \\
f^{\prime}(x) & =\frac{1}{2}\left(x^{2}+1\right)^{-1 / 2} \cdot(2 x) \\
& =x\left(x^{2}+1\right)^{-1 / 2} \\
& =\frac{x}{\left(x^{2}+1\right)^{1 / 2}} \\
& =\frac{x}{\sqrt{x^{2}+1}}
\end{aligned}
$$

(3)

$$
\begin{aligned}
\frac{d}{d x} \sin \left(x^{2}\right) & =\cos \left(x^{2}\right) \cdot(2 x) \\
& =2 x \cos \left(x^{2}\right)
\end{aligned}
$$

(4)

$$
\begin{aligned}
& f(x)=\sin ^{2} x \text { Revinte }(\sin x)^{2} \\
& \begin{aligned}
f^{\prime}(x) & =2 \sin x \cdot \cos x \\
& =2 \sin x \cos x
\end{aligned}
\end{aligned}
$$

(5)

$$
\begin{aligned}
f(x) & =\left(x^{3}-1\right)^{100} \\
f^{\prime}(x) & =100\left(x^{3}-1\right)^{99} \cdot\left(3 x^{2}\right) \\
& =300 x^{2}\left(x^{3}-1\right)^{99}
\end{aligned}
$$

(6)

$$
\begin{aligned}
& f(x)=\left(\frac{t-2}{2 t+1}\right)^{9} \\
& f^{\prime}(x)=9\left(\frac{t-2}{2 t+1}\right)^{8} \cdot\left(\frac{(1)(2 t+1)-(2)(t-2)}{(2 t+1)^{2}}\right)
\end{aligned}
$$

