2.7 Implicit Differentiation

Standards:

Old chain rule
(1)

$$
\begin{aligned}
f(x) & =\left(x^{2}+3\right)^{4} \\
f^{\prime}(x) & =4\left(x^{2}+3\right)^{3}(2 x) \\
& =8 x\left(x^{2}+3\right)^{3}
\end{aligned}
$$

(2)

$$
\begin{aligned}
f(x) & =\sin (4 x) \\
f^{\prime}(x) & =\cos (4 x) \cdot(4) \\
& =4 \cos (4 x)
\end{aligned}
$$

(3)

$$
\begin{align*}
f(x) & =x\left(x^{3}+5 x\right)^{3} \\
f^{\prime}(x) & =(x)\left[3\left(x^{3}+5 x\right)^{2} \cdot\left(3 x^{2}+5\right)\right]+\left(x^{3}+5 x\right)^{3} \tag{1}\\
& =x\left[\left(9 x^{2}+15\right)\left(x^{3}+5 x\right)^{2}\right]+\left(x^{3}+5 x\right)^{3}
\end{align*}
$$

new Implicit Differentiation
Let's consider $f(x)=\left(1+x^{5}\right)^{9}$.
Then, $f^{\prime}(x)=9\left(1+x^{5}\right)^{8} \cdot\left(5 x^{4}\right)$
Now, let's consider that we didn't hare a formula for the inside function. Let's say knew that y was a function of x.
So, $\frac{d}{d x}\left(y^{9}\right)$.

Basically, this is what happened...

$$
\begin{array}{ll}
\text { Let } y=\left(1+x^{5}\right) & \text { So we are going } \\
\frac{d}{d x}\left(1+x^{5}\right)^{9}=\frac{d}{d x} y^{9} 0^{\circ} & \begin{array}{l}
\text { to "act as it we } \\
\text { know that the variable } \\
\text { of the function is } x .
\end{array}
\end{array}
$$

Now let's take the derivative of y^{9}.

$$
\frac{d}{d x} y^{9}=9 y^{8} \cdot y^{\prime}
$$

Isn't that the same as...

$$
\frac{d}{d x}\left(1+x^{5}\right)^{9}=9\left(1+x^{5}\right)^{8} \cdot\left(5 x^{4}\right)
$$

Implicit Differentiation can beused to find y^{\prime} in equations involving x 's $\& y$'s, without solung for y.
[Examples] Find the derivatives.
(1)

$$
\begin{gathered}
\frac{d}{d x}\left(x^{2}+y^{2}=25\right) \\
2 x+2 y \cdot y^{\prime}=0 \\
2 y \cdot y^{\prime}=-2 x \\
y^{\prime}=\frac{-2 x}{2 y} \\
y^{\prime}=-\frac{x}{y}
\end{gathered}
$$

(2)

$$
\begin{gathered}
\frac{d}{d x}\left(4 x^{2}+9 y^{2}=36\right) \\
8 x+18 y \cdot y^{\prime}=0 \\
18 y \cdot y^{\prime}=-8 x \\
y^{\prime}=\frac{-8 x}{18 y} \\
y=-\frac{4 x}{9 y}
\end{gathered}
$$

(3) $\frac{d}{d x}\left(\frac{1}{x}+\frac{1}{y}=1\right)$
(4) $\frac{d}{d x}\left(x y+2 x+3 x^{2}=4\right)$

Rewrite. .

$$
\begin{gathered}
x^{-1}+y^{-1}=1 \\
-1 x^{-2}-1 y^{-2} \cdot y^{\prime}=0 \\
-x^{-2}-y^{-2} \cdot y^{\prime}=0 \\
-y^{-2} \cdot y^{\prime}=x^{-2} \\
\cdot y^{\prime}=\frac{x^{-2}}{-y^{-2}} \\
y^{\prime}=\frac{-y^{2}}{x^{2}}
\end{gathered}
$$

$$
\begin{aligned}
& \text { (5) } \frac{d}{d x}\left(x^{2} y+x y^{2}=3 x\right) \\
& {\left[\left(x^{2}\right) \cdot(1) y^{\prime}+(y)(2 x)\right]+\left[(x) \cdot(2 y) y^{\prime}+\left(y^{2}\right)(1)\right]=3} \\
& x^{2} y^{\prime}+2 x y+2 x y y^{\prime}+y^{2}=3 \\
& x^{2} y^{\prime}+2 x y y^{\prime}+2 x y+y^{2}=3 \\
& x^{2} y^{\prime}+2 x y y^{\prime}=3-2 x y-y^{2} \\
& y^{\prime}\left(x^{2}+2 x y\right)=3-2 x y-y^{2} \\
& y^{\prime}=\frac{3-2 x y-y^{2}}{x^{2}+2 x y}
\end{aligned}
$$

[Example 6] Find the slope of the curve at the indicated point.

$$
\begin{aligned}
x^{2}+y^{2} & =13 \text { at }(-2,3) \\
2 x+2 y \cdot y^{\prime} & =0 \\
2 y y^{\prime} & =-2 x \\
y^{\prime} & =\frac{-2 x}{2 y} \\
y^{\prime} & =\frac{-x}{y} \\
y^{\prime}(-2,3) & =\frac{-(-2)}{3}=\frac{2}{3}<\text { slope of tangent line. }
\end{aligned}
$$

Homework page 162: $1-8,9-10,17-18$.

