2.8 Derivatives of Exponential Functions

Standard: MCD1e

Old Chain Rule

Remember to find derivatives of composition of functions, one must use the chain rule:

Chain Rule $\longrightarrow \frac{d}{dx}(f(g(x))) = f'(g(x)) \cdot g'(x)$.

Find the derivatives of the following:

 $2f(x) = sin^{4}x = (sinx)^{4}$ $f'(x) = 4(sinx)^{3} \cdot (cosx)$ $= 4sin^{3}x cosx$

(4) f(x) = sin 4x $f'(x) = Cos 4x \cdot (4)$ $= 4\cos 4x$.

hew Exponential Derivatives > natural e

Definition: $\lim_{h \to 0} \frac{e^h - 1}{h} = 1$

Let's consider the function: $f(x) = e^x$. We are going to use the definition of the derivative to find the $\frac{d}{dx} e^x$.

$$\frac{d}{dx}e^{x} = e^{x}$$

But really ... its $\frac{d}{dx} e^{f(x)} = e^{f(x)} \cdot f'(x)$

[Note:] you will be using the chain rule a lot to find the derivatives of natural e's. DO NOT USE POWER RULE!

[More new] Exponential Derivatives -> exponential form

Recall an exponential function is where the base number is fixed and the exponent is the variable

Examples) $5^{\times}, 2^{\times}, (\frac{1}{2})^{\times}$ $f(x) = a^{\times}, \text{ where } a \neq 0.$ $Not \rightarrow x^2, x^3, x^{\prime 2}$ (power-functions or polynomials)

Let's consider the function:
$$f(x) = a^{x}$$
, where $a \neq 0$.
We want the dorivative.
 $1^{st} - let's$ write a^{x} in terms of $e^{x} \longrightarrow a^{x} = e^{lna^{x}}$
 $2^{nd} - Find$ the derivative using the rewrite:
 $\frac{d}{dx}(a^{x}) = \frac{d}{dx}(e^{lna^{x}}) = \frac{d}{dx}(e^{x \ln a}) = e^{x \ln a} \cdot (\ln a) = a^{x}(\ln a)$.
But really ... its $d = a^{f(x)} \ln a = a^{f(x)} \ln a \cdot f'(x)$
note: Always use chain rule on exponent!
[Examples]
(D) $\frac{d}{dx}(s^{x}) = s^{x} \cdot \ln s$
(D) $\frac{f(x)}{dx} = 7^{-x} \cdot \ln(7) \cdot (-1) = -7^{-x} \ln 7$.

3) $f(x) = 10^{sinx}$ $f'(x) = 10^{sinx} \cdot \ln(10) \cdot (cosx)$ $= cos \times 10^{sinx} \ln 10$.