2.9 Derivatives of Logarithmic Functions

This was created by Keenan Xavier Lee, 2013. See my website for more information, lee-apcalculus.weebly.com.

[01] Exponential Derivatives & Impliat Differentiation $(1) x^2 y = 7x$ $(x^2)(y') + (y)(2x) = 7$ $2 y = e^{\cos x}$ $y' = e^{\cos x} \cdot (-\sin x)$ $x^{2}y' + 2xy = 7$ = -sinx easx x²y' = 7 - 2xy $y' = \frac{7 - 2xy}{x^2}$ $3e^{xy} = 7x$ $e^{\times y} \cdot [(\times)(y') + (y)(1)] = 7$ exy [xy+y]=7 2 [Xy'+y]= 7 pxy exy $x_{y'} + y = \frac{1}{\rho x_{y}}$ $x_{y}' = \frac{1}{\rho^{xy}} - y$ $g' = \frac{7}{e^{xy}} - y$

This was created by Keenan Xavier Lee, 2013. See my website for more information teefapcalcolus. weebly.com.

Now let's consider
$$f(x) = \ln x$$
. We want to find the derivative.
So, $y = \ln x$ (can be remitted as $e^y = x$.
Now let's differentiation, $e^y = x$.
 $e^y = x$
 $e^y = x$
 $e^y = x$
 $e^y = \frac{1}{e^y}$
 $e^y = \frac{1}{e^y}$
be cause $e^y = x$.
But really ... its $d \ln(f(x)) = \frac{1}{x}$. $f'(x)$
loggivithmic Rules for Derivatives
 $\frac{d}{dx} \ln x = \frac{1}{x}$ $\frac{d}{dx} \log_a x = \frac{1}{(\ln a)(x)}$
(Examples) Find the derivatives.
 $\frac{1}{y'} = \frac{1}{(ax)}$ ($(\ln(x^2 + \ln)) = \frac{1}{x^2 + 10}$
 $y' = \frac{1}{x^2 + 10}$

This was created by Keenan Xavier Lee, 2013. See my website for more information, lee-apcalculus.weebly.com.

