2.9 Derivatives of Logarithmic Functions

Standard:
MCD1e \qquad
\qquad
\qquad
\qquad $\underline{\longrightarrow}$

This was created by Keenan Xavier Lee, 2013. See my website for more information, lee-apcalculus.weebly.com

OII Exponential Derivatives \& Impliat Differentiation

$$
\begin{aligned}
& \text { (1) } x^{2} y=7 x \\
& \left(x^{2}\right)\left(y^{\prime}\right)+(y)(2 x)=7 \\
& x^{2} y^{\prime}+2 x y=7 \\
& x^{2} y^{\prime}=7-2 x y \\
& y^{\prime}=\frac{7-2 x y}{x^{2}}
\end{aligned}
$$

(2)

$$
\begin{aligned}
y & =e^{\cos x} \\
y^{\prime} & =e^{\cos x} \cdot(-\sin x) \\
& =-\sin x e^{\cos x}
\end{aligned}
$$

(3)

$$
\begin{aligned}
& e^{x y}=7 x \\
& e^{x y} \cdot\left[(x)\left(y^{\prime}\right)+(y)(1)\right]=7 \\
& e^{x y}\left[x y^{\prime}+y\right]=7 \\
& \frac{e^{x} \cdot\left[x y^{\prime}+y=7\right.}{e^{x y}} \frac{7}{e^{x y}} \\
& x y^{\prime}+y=\frac{7}{e^{x y}} \\
& x y^{\prime}=\frac{7}{e^{x y}}-y \\
& y^{\prime}=\frac{7}{\frac{e^{x y}}{}-y} \\
& x
\end{aligned} .
$$

Hew Logarithmic Derivatives
Let's consider $f(x)=\log _{a} x$. Let's find the derivative.
So $y=\log _{a} x \stackrel{\text { can beremititon as }}{ } a^{y}=x$.
Now let's differentiation.

$$
\begin{aligned}
a^{y} & =x \\
a^{y} \cdot \ln (a) \cdot y^{\prime} & =1 \\
y^{\prime} & =\frac{1}{(\ln a) a^{y}} \\
y^{\prime} & =\frac{1}{(\ln a) x} \quad \text { because } a^{y}=x,
\end{aligned}
$$

But really... its $\frac{d}{d x} \log _{a} f(x)=\frac{1}{(\ln a) f(x)} \cdot f^{\prime}(x)$
[Examples] Find the derivatives.
(1).

$$
\begin{array}{rlr}
f(x)=\log _{2}(1-3 x) & \text { (2) } \frac{d}{d x}\left(\log _{5}\left(x e^{x}\right)\right)= \\
f^{\prime}(x)=\frac{1}{(\ln 2)(1-3 x)}(-3) & \left.=\frac{1}{(\ln 5)\left(\left(e^{x}\right)\right.} \cdot\left[(x)\left(e^{x}\right)+e^{x}\right)(1)\right] \\
& =\frac{-3}{(\ln 2)(1-3 x)} &
\end{array}
$$

This was created by Keenan Xavier Lee, 2013. See my website for more infornfations leefapcalcoklus.weebly.com.

Now let's consider $f(x)=\ln x$. We want to find the derivative.
So, $y=\ln x \stackrel{\text { can be remittent as }}{\Longleftrightarrow} e^{y}=x$
Now let's differentiation $e^{y}=x$.

$$
\begin{aligned}
e^{y} & =x \\
e^{y} \cdot y^{\prime} & =1 \\
y^{\prime} & =\frac{1}{e^{y}} \\
& =\frac{1}{x} \quad \text { because } e^{y}=x
\end{aligned}
$$

But really... its $\frac{d}{d x} \ln (f(x))=\frac{1}{f(x)} \cdot f^{\prime}(x)$
Logarithmic Rules for Derivatives

$$
\frac{d}{d x} \ln x=\frac{1}{x} \quad \frac{d}{d x} \log _{a} x=\frac{1}{(\ln a)(x)}
$$

[Examples] Find the derivatives.
(1)

$$
\begin{aligned}
& \begin{aligned}
y & =\ln (\cos x) \\
\begin{aligned}
y^{\prime} & =\frac{1}{\cos x} \cdot(-\sin x) \\
& =\frac{-\sin x}{\cos x}
\end{aligned} & =\frac{1}{d x}\left(\ln \left(x^{2}+10\right)\right)= \\
& =-\tan x .
\end{aligned}=\frac{2 x}{x^{2}+10} \cdot(2 x) \\
& x^{2}+10
\end{aligned}
$$

[Mare Examples] Differentiate problems.
(1)

$$
\begin{aligned}
f(x) & =\ln (\sqrt[5]{x})=\ln \left(x^{1 / 5}\right) \\
f^{\prime}(x) & =\ln \left(x^{1 / 5}\right) \\
& =\frac{1}{x^{1 / 5}} \cdot \frac{1}{5} x^{-4 / 5} \\
& =\frac{1}{5 x^{1 / 5} \cdot x^{1 / 5}} \\
& =\frac{1}{5 x^{5 / 5}} \\
& =\frac{1}{5 x}
\end{aligned}
$$

(2)

$$
\begin{aligned}
f(x) & =\log _{6}\left(2 x-3 x^{2}\right) \\
f^{\prime}(x) & =\frac{1}{(\ln 6)\left(2 x-3 x^{2}\right)}(2-6 x) \\
& =\frac{2-6 x}{(\ln 6)\left(2 x-3 x^{2}\right)}
\end{aligned}
$$

(3)

$$
\begin{aligned}
& y=\cos (\ln x) \\
& y^{\prime}=-\sin (\ln x) \cdot \frac{1}{x} \\
& =\frac{x^{4} \cos x+4 x^{3} \sin x}{x^{4} \sin x} \\
& =-\frac{\sin (\ln x)}{x} \\
& =\frac{x^{3}(x \cos x+4 \sin x)}{x^{4} \sin x} \\
& =\frac{x \cos x+4 \sin x}{x \sin x} \\
& =\frac{x \cos x}{x \sin x}+\frac{4 \sin x}{x \sin x} \\
& =\frac{\cos x}{\sin x}+\frac{4}{x}=\cot x+\frac{4}{x} \\
& \text { This was created by Keenan Xavier Lee, 2013. See my website for more information }
\end{aligned}
$$

