Homework 3.3 Characteristics of Exponential Functions
Find the domain, range, asymptote, \boldsymbol{y}-intercept and end behavior of each exponential function's graph.
1.

2.

Domain:

Range:
Asymptotes:
Y-intercept: \qquad
End Behavior:
as $x \rightarrow-\infty, y \rightarrow$
as $\mathrm{x} \rightarrow \infty, \mathrm{y} \rightarrow \square$
4.

5.

7.

6.

8.

Domain: \square
Range:

Asymptotes: \qquad
Y-intercept:
End Behavior: as $x \rightarrow-\infty, y \rightarrow$ as $x \rightarrow \infty, y \rightarrow$

This was created by Keenan Xavier Lee - 2015. See my website for more information, lee-apcalculus.weebly.com

3.3 Answers

1 Domain: $(-\infty, \infty)$; Range: ($0, \infty$); Asymptote: $y=0$; End Behavior: as $x \rightarrow-\infty, y \rightarrow 0$ and as $x \rightarrow \infty, y \rightarrow \infty$ 2 Domain: $(-\infty, \infty)$; Range: ($0, \infty$); Asymptote: $y=0$; End Behavior: as $x \rightarrow-\infty, y \rightarrow \infty$ and as $x \rightarrow \infty, y \rightarrow 0$ 3 Domain: $(-\infty, \infty)$; Range: $(3, \infty)$; Asymptote: $y=3$; End Behavior: as $x \rightarrow-\infty, y \rightarrow 3$ and as $x \rightarrow \infty, y \rightarrow \infty$ 4 Domain: $(-\infty, \infty)$; Range: $(-1, \infty)$; Asymptote: $y=-1$; End Behavior: as $x \rightarrow-\infty, y \rightarrow \infty$ and as $x \rightarrow \infty, y \rightarrow-1$ 5 Domain: $(-\infty, \infty)$; Range: $(-\infty, 1)$; Asymptote: $y=1$; End Behavior: as $x \rightarrow-\infty, y \rightarrow-1$ and as $x \rightarrow \infty, y \rightarrow-\infty$ 6 Domain: $(-\infty, \infty)$; Range: $(-\infty, 0)$; Asymptote: $y=0$; End Behavior: as $x \rightarrow-\infty, y \rightarrow 0$ and as $x \rightarrow \infty, y \rightarrow-\infty$ 7 Domain: $(-\infty, \infty)$; Range: $(-2, \infty)$; Asymptote: $y=-2$; End Behavior: as $x \rightarrow-\infty, y \rightarrow-2$ and as $x \rightarrow \infty, y \rightarrow \infty$ 8 Domain: $(-\infty, \infty)$; Range: ($0, \infty$); Asymptote: $y=0$; End Behavior: as $x \rightarrow-\infty, y \rightarrow \infty$ and as $x \rightarrow \infty, y \rightarrow 0$

