3.4 Chord Properties,

Tangent Problems

[old Finding Segment Lengths in Circles
Find $\overline{B F} \& \overline{A G}$.

Find $\overline{B F}$.

$$
\begin{aligned}
\text { part } * \text { part } & =\text { part } * \text { part } \\
3 * \overline{D F} & =\overline{B F} * E F \\
3 * 14 & =\overline{B F} * 6 \\
42 & =6 \overline{B F} \\
7 & =\overline{B F}
\end{aligned}
$$

Find $\overline{A E}$
outside $*$ whole $=$ outside $*$ while

$$
\begin{aligned}
A G * \frac{A G}{A G} & =A E * A B \\
& =8 * 21 \\
\frac{A G^{2}}{} & =168 \\
\sqrt{A G^{2}} & =\sqrt{168} \\
\frac{A G}{} & =\sqrt{168}=2 \sqrt{42} \approx 12.96
\end{aligned}
$$

new Chord Properties
Let's consider the below diagram. Find $\overline{B C}$.

$$
\begin{aligned}
\text { outside } * \text { whole } & =\text { outside } * \text { whole } \\
\overrightarrow{A B} * A B & =\overrightarrow{B C} * B C \\
8 * 8 & =\overrightarrow{B C} * \overrightarrow{B C} \\
& =\overrightarrow{B C}^{2} \\
\sqrt{644^{4}} & =\sqrt{B C} \\
8 & =B C .
\end{aligned}
$$

1. If 2 segments from the same exterior vertex are tangent to a circle, then they are congruent.

2. If 2 chords are congruent, then their corresponding ares are congruent.

$$
\overline{A B} \cong \overline{C D} \text { and } \widehat{A B}=\widehat{C D} \text {. }
$$

2. If 2 chords are congruent, then they are equidistant from the center.

$$
\overline{A B} \cong C D \text { and } \overline{E G} \cong \overline{F G}
$$

3. If a diameter is perpendicular to a chord, then it bisects the chord also resulting in congruent ares.

$$
B E=\text { diameter }
$$

$\overline{B E} \perp \overline{C D}$ and $\overline{C G} \cong \overline{D G}$.
also $\overparen{C B}=\widehat{D B}$.

This was created by Keenan Xavier Lee - 2014. See my website for more information, lee-apcalculus.weebly.com.
5. If a tangent intersects with a radius of a center, then the intersection forms a right angle.

[Examples] Find the unknown.
(2)Find the arc measure.

Since $\overline{A B} \cong \overline{C D}$, then $\widehat{A B}=\overline{C D}$.

$$
\begin{aligned}
\widehat{A B} & =\widehat{C D} & \overparen{A B}=3 x+3 & \widehat{A B}=\widehat{C D} \\
3 x+z=8 x-7 & & =3(2+3 & 90=C D \\
-3 & =-3 & & =\left(9^{0}\right)+
\end{aligned}
$$

(2) Find $\overline{C D}$.

$$
\begin{aligned}
& \overline{A B} \cong \overline{C D} \\
& y+4=2 y-3 \\
&-4=-4 \\
& y \overline{A B}=y+4 \quad \overline{A B}=\overline{C D} \\
& y=2 y-7=7+4 \quad(11) \\
&-2 y=-2 y \\
&-y=-7 \\
& y=7
\end{aligned}
$$

(3) Find $\widehat{A B}$

Since $\overline{A B} \cong \overline{A C}$, then $\widehat{A B}=\widehat{A C}$

$$
\begin{aligned}
\widehat{B C}+\widehat{A B}+\overparen{A C} & =360^{\circ} \\
100^{\circ}+\widehat{A B}+\widehat{A B} & =360^{\circ} \\
100^{\circ}+2 \widehat{A B} & =360^{\circ} \\
2 A B & =260 \\
\widehat{A B} & =130^{\circ}
\end{aligned}
$$

This was created by Keenan Xavier Lee - 2014. See my website for more information, lee-apcalculus.weebly.com.
3. Find lengthof $\overline{T y}$. if $\overline{U S}=4 x$ and $\overline{T y}=-3 x+56$.

$$
\begin{aligned}
& \overline{T y} \cong \overline{4 S} \\
&-3 x+56=4 x \\
&=+3 x \\
& 56=7 x \\
& 8=x
\end{aligned}
$$

$$
\begin{aligned}
T y & =-3 x+56 \\
& =-3(8)+56 \\
& =32
\end{aligned}
$$

(4) Find length of $\overline{C K}$ if $C k=2 x+3$ and $\overline{C z}=4 x$.

$$
\begin{array}{rlrl}
\overline{C z} & \cong \overline{c k} & \overline{C k} & =2 x+3 \\
2 x+3=4 x & & =2(1.5)+3 \\
-2 x=-2 x & & =6 . \\
\hline \frac{3}{2}=\frac{2 x}{2} & & \\
1.5 \approx \frac{3}{2}=x & &
\end{array}
$$

