[OLd Find Arc Measures in Coles
(1) Find $m<B A C$.

$$
\begin{gathered}
\frac{\text { Big Arc -Small Arc }}{2}=\text { Outside Angle } \\
\frac{\overline{D E}-\overline{B C}}{2}=\angle B A C \\
\frac{124^{\circ}-18^{\circ}}{2}=<B A C \\
53^{\circ}=<B A C
\end{gathered}
$$

(2) Find $\widehat{B C}$.

$$
\begin{aligned}
& \frac{\text { Big Arc -Small Arc }}{2}=\text { Outside Angle } \\
& \frac{\overparen{D E}-\overparen{B C}}{2}=<B A C \\
& \frac{\| 0^{\circ}-B C}{2}=20^{\circ} \\
& 110^{\circ}-\widehat{B C}=40^{\circ} \\
& -B C=-70^{\circ} \\
& B C=70^{\circ}
\end{aligned}
$$

- Arc Measure is the angle that an arc makes at the center of the circle of which it is part.

new Arc Length \& Area of Sector
Let's consider the circle with a radius of 4. Find the circumference of the circle.

$$
\begin{aligned}
& \text { Circumference }=2 \pi r \text { radius } \\
& c=2 \pi r \\
& c=2 \pi(4) \\
&=8 \pi \approx 25.13 \\
& \text { exact } \\
& \text { answer } \quad \begin{array}{l}
\text { approximation } \\
\text { or rounded } \\
\text { answer }
\end{array} \\
&
\end{aligned}
$$

What does the circumference of a circle mean?
Circumference means the distance (length) around a circle.
Let's prove the formula of a circumference. Let's "dissect" the circle by unrolling the circle.

[Example] A circular flower garden has a radius of 3 feet. Find the circumference of the garden to the nearest hundredths.

$$
\begin{aligned}
C & =2 \pi r \\
C & =2 \pi(3) \\
& =6 \pi \approx 18.85 \text { feet. }
\end{aligned}
$$

The distance around the circular flower garden is
approximately 18.85 ft .
This was created by Keenan Xavier Lee - 2014. See my website for more information, lee-apcalculus.weebly.com.

Arc Length The distance (length) along the curved line making the arc.

(NoT the same as are measure \Rightarrow will NOT have a degree amount)

$$
\begin{aligned}
& \text { Arc Length }=\left(\frac{\operatorname{arc} \text { measure }}{360^{\circ}}\right) 2 \pi r \\
& \text { length of } B C=\left(\frac{m B C}{2}\right) 2 \pi(\overline{A B}) .
\end{aligned}
$$

[Examples] Find the arc lengths.
(1) Find length of $\overparen{K L}$.

$$
\begin{aligned}
& \text { Arc length }=\left(\frac{\operatorname{arc} \text { measure }}{360^{\circ}}\right) 2 \pi r \\
& \begin{aligned}
\text { length of } \widetilde{K} & =\left(\frac{m \overline{K L}}{360^{\circ}}\right) 2 \pi(\overline{x K}) \\
\text { length of } \widehat{K L} & =\left(\frac{70^{\circ}}{360^{\circ}}\right) 2 \pi(8) \\
& =\frac{28 \pi}{9} \approx 9.77 \mathrm{~m}
\end{aligned}
\end{aligned}
$$

(2) Find length of J.

$$
\begin{aligned}
\text { Arc Length } & =\left(\frac{\operatorname{arc} \text { measure }}{360^{\circ}}\right) 2 \pi r \\
\text { length of } \overparen{J L} & =\left(\frac{m J L}{360^{\circ}}\right) 2 \pi r \\
\text { Length of } J L & =\left(\frac{110^{\circ}}{360^{\circ}}\right) 2 \pi(12) \\
& =\frac{22 \pi}{3} \approx 23.04 \mathrm{in}
\end{aligned}
$$

(3) Find length of $\overparen{A C}$.

$$
m \widetilde{A C}=m \angle A B C
$$

Arc Length $=\left(\frac{\operatorname{arc} \text { measure }}{360^{\circ}}\right) 2 \pi r$
Length of $\overparen{A C}=\left(\frac{m \overparen{A C}}{360^{\circ}}\right)(2 \pi r)$

$$
=\left(\frac{120^{\circ}}{360^{\circ}}\right) 2 \pi(5)
$$ because of $m \angle A B C$ is the central angle.

Let's consider a circle with radius,r. How do we find the amount of space fill in a circle?

Area of Square $A=r * r=r^{2}$

Area of 4 squares $=r^{2} * 4$

Area of 4 squares $=r^{2} * 4$
but we don't want the space
in the corner.
(We need to multiply
by something less than 4)
Let's consider the circle with a radius of 4. Find the area of the circle.

$$
\begin{aligned}
& \text { Area }=\pi(\text { (radius })^{2} \\
& A=\pi r^{2} \\
& A=\pi(4)^{2} \\
& A=16 \pi \approx 50.27 \\
& \quad \text { exact app proximation } \\
& \text { answer or rounded } \\
& \text { answer }
\end{aligned}
$$

Example] A circular flower garden has a radius of 3 feet. Find the area of the garden to the nearest hundredths.

$$
\begin{aligned}
& A=\pi r^{2} \\
& A=\pi(3)^{2} \\
& A=9 \pi \approx 28.27 \mathrm{ft}^{2}
\end{aligned}
$$

The space filled in the circular flower garden is approximately $28.27 \mathrm{ft}^{2}$.
This was created by Keenan Xavier Lee - 2014. See my website for more information, lee-apcalculus.weebly.com.

The amount of space bounded by 2 radii of the circle \& their intercepted arc.

$$
\text { Area of Sector }=\left(\frac{\operatorname{arc} \text { measure }}{360^{\circ}}\right) \pi r^{2}
$$

[Examples] Find thearen of the sector.
(1) Find area of $\overparen{R Q}$

$$
\begin{aligned}
\text { Area of sector } & =\left(\frac{\operatorname{arc} \text { measure }}{360^{\circ}}\right) \pi r^{2} \\
\text { Area of } \widetilde{R Q} & =\left(\frac{m \mathbb{R Q}}{360^{\circ}}\right) \pi(\overline{R A})^{2} \\
& =\left(\frac{60^{\circ}}{360^{\circ}}\right) \pi(6)^{2} \\
& =6 \pi \approx 18.85 \mathrm{~cm}^{2}
\end{aligned}
$$

(2) Find the area of a sector with central angle of 45° if the diameter of circle is 12 inches.

Draw picture:

$$
\text { Area of sector }=\left(\frac{45^{\circ}}{360^{\circ}}\right) \pi(6)^{2}
$$

if diameter $=12 \mathrm{in}$,

$$
\text { Area of sector }=\left(\frac{\operatorname{arc} \text { measure }}{360^{\circ}}\right) \pi r^{2}
$$

$$
=\frac{9 \pi}{2} \approx 14.14 \mathrm{in}^{2}
$$

then radius $=6$ in.

