3.5 Trigonometric Derivatives

Standard:	
MCD1e	
	_/

[Examples] Evaluate Try Functions.

(1) $\cos\left(\frac{\pi}{3}\right) = \frac{1}{2}$ (2) $\sin\left(\frac{\pi}{3}\right) = \frac{\sqrt{3}}{2}$ (3) $\sin\left(\frac{5\pi}{4}\right) = \frac{\pi}{2}$

= lim Sinxcosh + cosxslinh - sinx = lim Sinx cosh-sinx + cosx sinh = lim slinx (cosh - 1) + cosxsinh = lim Sinx (cash-1) + lim cosx sinh = lim sinx. lim cosh-1 + lim cosx. lim sinh = $\sin(x) \cdot \frac{\cos(0)-1}{4} + \cos x \cdot 1$ (graphically) $= (\sin x \cdot 0) + (\cos x \cdot 1)$ = COSX conclusion: d/(sinx) = cosx. This was created by Keenan Xavier Lee, 2013. See my website for more information, lee-apcalculus.weebly.com.

sidenote: Double Angle Formula

sin(xth)= sinx cosh + cosx sinh

[new] Trig Derivatives

f'(x)= lim f(x+h) - f(x) h+0 h

- lim Sin(xth) - Sin(x)

Let's consider f(x)= sin(x). Find the derivative.

Trig Derivatives Memorize

$$\frac{d}{dx}(\sin x) = \cos x$$

$$\frac{d}{dx}(\cos x) = -\sin x$$

$$\frac{d}{dx}(\tan x) = \sec^2 x$$

$$\frac{d}{dx}(cs(x) = -cs(x) \cot x$$

$$\frac{d}{dx}(se(x) = se(x) \tan x$$

$$\frac{d}{dx}(cot(x) = -cs(x) \cot x$$

[Examples] Find the derivatives of each function.
1)
$$f(x) = x^3 \sin x$$
 $e^{-\frac{x^3}{9^2}}$ $e^{-\frac{x^3}{9^2}}$

$$f'(x) = x^{3} \sin x$$

$$f'(x) = (x^{3})(\cos x) + (\sin x)(3x^{2})$$

$$= x^{3} \cos x + 3x^{2} \sin x$$
(2) $f(x) = \frac{x}{(\cos x)(3x^{2})} - (x^{3})(-\sin x)$

$$= (\cos x)^{2}$$

$$= x^{2}(x \cos x + 3 \sin x).$$

$$\Im f(x) = x \tan x$$

$$f'(x) = (x)(\sec^{2}x) + (\tan x)(1)$$

$$= (x) (sec^2 x) + (tanx)(1)$$

$$= x sec^2 x + tanx.$$

$$f(x) = (\cos x \sin x)$$

$$f'(x) = (\cos x)(\cos x) + (\sin x)(-\sin x)$$

$$= \cos^2 x - \sin^2 x$$

$$= \cos^2 x - \sin^2 x$$

$$f(x) = \sqrt{2} + \sec x$$

$$f'(x) = \sec x \tan x$$

(6) $f(x) = x^3 + cscx$ f'(x) = 3x2 - CSCX cotx

 $= 3x^2 \cos x + x^3 \sin x$ (bs²x

 $= x^2(3 (\cos x + x \sin x))$

(8) f(x)= 6 cot x

 $f'(x) = -6 \cos^2 x$.

cos² X

This was created by Keenan Xavier Lee, 2013. See my website for more information, lee-apcalculus weebly com.

$$9f(x) = \frac{x^2 \sin x}{\cos x}$$

$$f'(x) = (COSX)[(x^2)(COSX) + (SINX)(2X)] - (x^2SINX)(-SINX)$$

$$(COSX)^2$$

$$= (\cos x \left[x^2 \cos x + 2x \sin x \right] + x^2 \sin^2 x$$

$$\cos^2 x$$
= $x^2 \cos^2 x + 2x \cos x \sin x + x^2 \sin^2 x$

$$= \frac{x^{2} \cos^{2} x}{\cos^{2} x} + \frac{2x \cos x \sin x}{\cos^{2} x} + \frac{x^{2} \sin^{2} x}{\cos^{2} x}$$

$$= \chi^2 + \frac{2\sin x}{\cos x} + \frac{\chi^2 \sin^2 x}{\cos^2 x}$$