
 3.6 Finding Volumes of 3-Dimensional
 Shapes

Spheres
old Area of 2-dimensional figures

$$
\begin{aligned}
& \text { Area }_{\text {Triangle }}=\frac{1}{2}(\text { base })(\text { height }) \quad \text { Area }_{\text {sqRect }}=(\text { base })(\text { height }) \\
& \text { Area }_{\text {Trapezoid }}=\frac{1}{2}\left(\text { base }_{1}+\text { base }_{2}\right)(\text { height }) \quad \text { Area }_{\text {Circle }}=\pi(\text { (radius })^{2}
\end{aligned}
$$

note: Finding area in a 2 -dimensional figure means to find the amount of space occupied in the in the closed boundary.

Find the area of each.

(2)

$$
\begin{aligned}
\text { Area }_{T r i} & =\frac{1}{2}(\text { base })(\text { height }) \\
& =\frac{1}{2}(4 \mathrm{~cm})(6 \mathrm{~cm}) \\
& =12 \mathrm{~cm}^{2}
\end{aligned}
$$

$$
\begin{array}{rlr}
\text { Area }_{\text {Rect }} & =(\text { (base) (height) } \\
& =(4 \mathrm{~cm})(8 \mathrm{~cm}) \\
& \\
& =32 \mathrm{~cm}^{2} \\
\text { Area }_{\text {Hat }} & =\frac{\pi(\text { radius })^{2}}{2} \\
\text { Circle } \\
& =\frac{\pi(2 \mathrm{~cm})^{2}}{2} \\
& =2 \pi \mathrm{~cm}^{2}
\end{array} \quad \begin{aligned}
\end{aligned}
$$

new Volumes of Spheres
Let's consider a sphere (3-Dimensimal Figure).

$$
\text { Volume }_{\text {Sphere }}=\frac{4}{3} \pi r^{3}
$$

Volume of a 3-dimensional figure means the amount of space occupied in the closed boundary.

Hemisphere is the cutting of a sphere down the middle.
[Examples] Find the volume.
(1)

$$
\begin{aligned}
\text { Volume }_{\text {Sphere }} & =\frac{4}{3} \pi r^{3} \\
V & =\frac{4}{3} \pi(2 \mathrm{~cm})^{3} \\
& =\frac{32 \pi}{3} \mathrm{~cm}^{3} \approx 33.51 \mathrm{~cm}^{3}
\end{aligned}
$$

(2)

Diameter $=10 \mathrm{~cm}$

$$
\text { Radius }=5 \mathrm{~cm}
$$

$$
\begin{aligned}
\text { Volume }_{\text {Sphere }} & =\frac{4}{3} \pi r^{3} \\
V & =\frac{4}{3} \pi(5 \mathrm{~cm})^{3} \\
& =\frac{500 \pi}{3} \approx 5 \mathrm{~cm}^{3} \approx 523.60 \mathrm{am}^{3}
\end{aligned}
$$

(3) The circumference of a great circle of a sphere is 25inches. Find the volume of the sphere.

$$
\begin{aligned}
\text { Volume }_{\text {Sphere }} & =\frac{4}{3} \pi r^{3} \\
V & =\frac{4}{3} \pi(3.98 \mathrm{in})^{3} \\
V & \approx 263.86 \mathrm{in}^{3}
\end{aligned}
$$

need to find radius:

$$
\begin{aligned}
& c=2 \pi r \\
& 25=2 \pi r \\
& \frac{25}{2 \pi}=\frac{2 \pi r}{2 \pi} \\
& 3.98 \approx r
\end{aligned}
$$

