3.7 Finding Volumes of 3-Dimensional Shapes

Old Volume of Sphere
(1) A spherical balloon has an initial radius of 5 in. When more air is added, the radius becomes 10 in . Explain how the volume changes as the radius changes.

$$
\begin{aligned}
\text { Volume }_{\text {Sphere }} & =\frac{4}{3} \pi r^{3} \\
V & =\frac{4}{3} \pi\left(5 \mathrm{~cm}^{3}\right. \\
& =\frac{500 \pi}{3} \mathrm{~cm}^{3} \\
& \approx 523.60 \mathrm{~cm}^{3}
\end{aligned}
$$

Sphere with radius of 5 cm is $523.60 \mathrm{~cm}^{3}$. Sphere with radius of 20 cm is $4118.80 \mathrm{~cm}^{3}$.
new Volume of Prisms \& Cylinders
Let's recall: Area is the amount of square units of space a figure occupies

Also, let's recall : Volume is the amount of cubic units of space a solid occupies

How do we find the volume of these figures?
CAVALIER PRNNIPLE - If the cross-sectional area of 2 prisms is the same for every height above the base, then the volumes will be the same.

Why does this matter?

Let's consider a rectangle \& find the space filled
in the region. (Find area.)

$$
\begin{aligned}
\text { Area } & =b * h \\
& =3 \times 2 \\
& =6
\end{aligned}
$$

Let's consider the same rectangle \& stack a deplicate of the rectangle on top. Find the space filled in object. (Find volume.)

$$
\begin{aligned}
& \text { Volume }=\text { Area of Rectangle } * \text { depth } \\
& \text { Volume }=\text { Base } * \text { height }
\end{aligned}
$$

now there "

$$
\begin{aligned}
& \text { now there" } \\
& \text { is "depth" }
\end{aligned}
$$

or deepness" $0_{0} 0_{0}$ think about:
a pool of water
[Example1] Find the Volume of the Prism.
(1)

$$
\begin{aligned}
\text { Volume } & =\text { Base } * \text { height } \\
& =(8.5 \mathrm{ft})(3.2 \mathrm{ft}) *(13.7 \mathrm{ft}) \\
& \approx 372.64 \mathrm{ft}^{3} .
\end{aligned}
$$

Now, let's consider a circle \& find the space filled in the region. (Find area.)

$$
\begin{aligned}
\text { Area } & =\pi r^{2} \\
& =\pi(5)^{2} \\
& =25 \pi
\end{aligned}
$$

This was created by Keenan Xavier Lee - 2014. See my website for more information, lee-apcalculus.weebly.com.

Let's consider the same rectangle \& stack a deplicate of the circle beside it. Find the space filled in object. (Find volume.)

[Example 2] Find the volume of the Cylinder.

$$
\begin{aligned}
\text { Volume } & =\text { Base } * \text { height } \\
& =\pi r^{2} * h \\
& =\pi(\mathrm{sm})^{*} *(10 \mathrm{~cm}) \\
& \approx 785.4 \mathrm{~cm}^{3}
\end{aligned}
$$

Prism
Volume : Base * height

$$
=(\text { length }) \text { width }) *(\text { height })
$$

Cylinder
$\sqrt{\text { olume }}=$ Base $*$ height $=\left(\pi(\operatorname{radus})^{2}\right) *$ height

