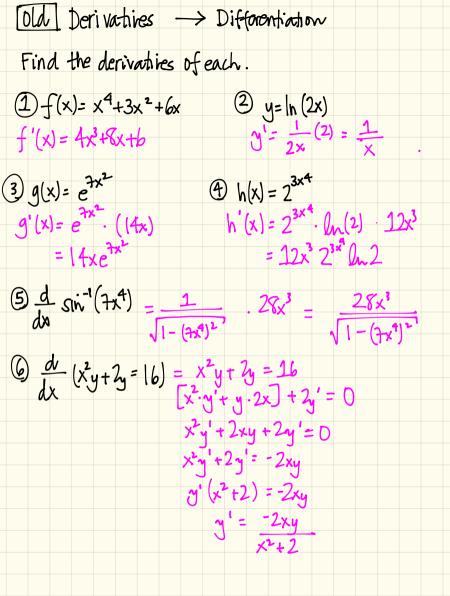
4.1 Antiderivatives

Standards: MCI1 MCI1b



[new] Antiderivatives

Before) We have been computing derivatives (differentiation) where we start with the position function f(x) & we "do something" to f(x) to come up with the derivatives f'(x).

(Now) We are going into the "other direction" where we start with f(x) &we look at another function F(x) such that f(x) is the derivative of F(x). [i.e. F'(x) = f(x)].

Let's consider that f'(x) = g'(x) for all x, then f(x) = g(x) + c[Example] $\pi f(x) = x^2 + 3$ f'(x) = g'(x) = 2x'g (x) = X + 0

(<u>Conclusion</u>) g'(x) = 2x and f'(x) = 2x. fand g have the same derivative but differ by a constant.

Definition

If F(x) is a function such that F'(x) = f(x), then F(x) is called the antidorivative of f(x).

Also, if F(x) is an antiderivative f(x), then F(x) + c (for some constant c) is the most general antiderivative of f(x).

[Example] x2+c is the most general antiderivative for 2x.

Question How can we find antiderivatives of power functions.

We can use what we know about some derivatives

 $\chi \Rightarrow \chi^2 + C$

 $\begin{array}{c} x^{2} \Rightarrow \underbrace{X^{3}}_{3} + C \\ x^{3} \Rightarrow \underbrace{X^{4}}_{4} + C \end{array}$

 $X^n \Rightarrow \frac{x^{n+1}}{n+1} + C -$

power rule for antidifferentiation

So here we go: antiderivatives of

(Examples) find the most general antidenivatives. $(1) f(x) = \chi^{5} + 3x^{3} + \frac{2}{x^{2}} - 5e^{-x}$ Row nite = $x^{5} + 3x^{3} + 2x^{-2} - 5e^{-x}$ $F(x) = \frac{x^{6}}{4} + 3\left(\frac{x^{4}}{4}\right) + 2\left(\frac{x^{-1}}{-1}\right) - 5e^{-x} + C$ $= \frac{1}{6} \times 6 + \frac{3}{4} \times 4 - \frac{2}{2} + 5e^{-1} + C$ (2) $g(x) = x^{4}+2$ $G(x) = \frac{x^{5}}{5}+2x + C$ (3) $h(x) = x^{-2} + \pi + \pi + (x) = \frac{x^{-1}}{-1} + \pi + c$ =-<u>1</u>+1rx+C 4) $j(x) = 2x - \frac{3}{x^4}$ Rewrite = $2x - 3x^{-4}$ $J(x) = 2\left(\frac{x^{2}}{2}\right) - 3\left(\frac{x^{-3}}{2}\right) + C$ $= \chi^{2} + \frac{1}{\chi^{3}} + C$ WARNING: We do not have analogies of product, quotient or chain rules for antidifferentiation ... (yet!) (5) $f(x) = x^3 + x^2 + x$ $\operatorname{Rewrite} = \frac{x^3}{x} + \frac{x^2}{x} + \frac{x}{x} = x^2 + x + 1$ $F(x) = \frac{x^3}{3} + \frac{x^2}{2} + x + C$

 $\frac{d^2}{dt^2} s(t) = \frac{d}{dt} v(t) = a(t) \qquad f(x) = \text{positivity} \\ f'(x) = \text{velocity} \\ f''(x) = \text{occeleration} \\ function \qquad func$

Integration
$$\rightarrow$$
 the process of antidifferentiation of a function.
Definition
Given a function, $F(x)$, an antiderivative of $f(x)$ is any
function $F(x)$ such that $F'(x) = f(x)$.
If $F(x)$ is any antiderivative of $f(x)$, then the most general
antiderivative of $f(x)$ is called an indefinite integral and
approximate of $f(x)$ is called an indefinite integral and
antiderivative of $f(x)$ is the integral and
antiderivative of $f(x)$ is the integral and
antiderivative of $f(x) = F(x) + C$
Integral symbol "x" is the
integral symbol "x" is the
integral $f(x) = \frac{x^5 + 3x^2}{2} - 9x + C$
 $2\int x^2 + 3x - 9dx = \frac{x^5 + 3x^2}{2} - 9x + C$
 $2\int x^2 - 2x - 5dx = \frac{x^3 - 2x^2}{2} - 5x + C$
 $3\int \int 2^2 - 5x^2 dx = 2x - \frac{5x^3}{3} + C$

Why is (f(x) dx = F(x) + c called an indefinite integral?

The reason is because we are just finding the antiderivative, Not evaluating the antiderivative.

What about other types of functions?
Antiderivatives for Trig Functions:
Sinx dx = -cosx + C
$$\int cscx \cot x \, dx = -cscx + c$$

(cosx dx = sinx + c $\int secx \tan x \, dx = secx + c$
Sec²x dx = tanx + c $\int csc2x \, dx = -tanx + c$
Stanx dx = In [secx] + c $\int cotx = \ln |sinx| + c$
Secx dx = In [secx] + c $\int cotx = \ln |sinx| + c$
Secx dx = In [secx + tanx] + c $\int cscx \, dx = \ln |cscx - cotx| + c$
Antiderivatives for Inverse Trig Functions:
 $\int \frac{1}{\sqrt{1-x^2}} dx = sin^{-1}x + c$ $\int \frac{1}{1+x^2} dx = tan^{-1}x + c$
Antiderivations for Paly nomials:
 $\int x^n \, dx = x^{n+1} + c$
 $n+1$

Andidenvatives for Exponential Rules/Logarithmic Rules

 $\int e^{x} dx = e^{x} + c$ $\int \frac{1}{x} dx = |n| |x| + c$

Position Function Problems

Let's say $f'(x)=x^3$ and f(0)=4. What is the position function. $f'(x)=x^3$ $f(x)=\frac{x^4}{4}+c$ Now we know that f(0)=4, so... $f(0)=\frac{(0)^4}{4}+c=4$ c=4The position function is $f(x)=\frac{x^4}{4}+4$ when f(0)=4.

[Example] Find the position function. (1) $f'(t) = 2t + 9t^2$, f(1) = 2. $f(t) = \frac{2t^2}{2} + \frac{9t^3}{3} + c$ $= t^2 + 3t^3 + c$

 $Sin (u f(1)=2), f(1)=(||)^{2}+3(2)^{2}+c=2$ = |+3+c=2 = 4+c=2 c=-2

Therefore when f(1)=2, f(t)=t³+3t²-2.

