4.1 Arithmetic Sequences

Standards:
F.BF. 2
F.LE. 2
F.LE. 3

Old Patterns
Determine the pattern in each situation.
(1) $12,24,36,48, \ldots$ - Adding 12
(2) $-12,-13,-14,-15, \ldots$ - Subtracting 1
(3) $4,16,64,256,1024, \ldots$ - Multiply 4
(4) $4,8,12,16,20,24, \ldots$ - Adding 4
now Sequences
A sequence is a string of numbers that contains a certain pattern.
(For Example) $12,24,36,48, \ldots$ is a sequence because the string of numbers holds a pattern of "Adding 12 ".

Notation of a Sequences:
a_{n} - where n is referring to the term number in the sequence.
(Example) $12,24,36,48, \ldots$

$$
\begin{aligned}
& 12,24,36,48, \ldots \\
& a_{1} a_{2} a_{3} a_{4} \\
& \text { (15 \# \#) }\left(2^{2} \#\right)\left(3^{d} \|\right)\left(4^{\text {th}} \#\right)
\end{aligned}
$$

FACT The values in the range are called the term of the sequence.
Domain: $123445 \cdots n$
(position in the sequence)
Range: $\begin{array}{llllll}a_{1} & a_{2} & a_{3} & a_{4} & a_{5} & \cdots\end{array} a_{n}$
(the actual sequence)
(Example) For the sequence $12,24,36,48, \ldots$, label the domain \& range.

Domain	1	2	3	4	\cdots
Range	12	24	36	48	\cdots

more new Arithmetic Sequences
Arithmetic Sequence - is formed by adding (or subtracting) a particular value each time to the value just before it.
We notate arithmetic sequences with d meaning "commun differences".
[Examples]
$\left(_{4}, 8,12,16,20,24, \ldots \quad d=4\right.$
(2) $-1,1,3,5, \ldots \quad d=2$
(3) $-2,-4,-6,-8, \ldots d=-2$

This was created by Keenan Xavier Lee, 2015. See my website for more information, lee-apcalculus.weebly.com.
[Examples 2] Find $a_{3}, a_{5} \& a_{7}$.
(1) $4,8,12,16, \ldots-a_{3}=12 \quad a_{5}=20, a_{7}=28$
(2) $-1,1,3,5, \ldots-a_{3}=3, a_{5}=7, a_{7}=11$
(3) $-2,-4,-6,-8, \ldots a_{3}=-6, a_{5}=-10, a_{7}=-14$

There are 2 ways to express a sequence:
(1) Recursive
(2) Explicit
11) Recursive Formula for Anithmetic Sequences

note: All you have to do is identity the a_{1} term \& the common difference.
[Example] Write the recursive formula for the following arithmetic sequences.
(1) $4,8,12,16, \ldots \quad a_{1}=4, a_{n}=a_{n-1}+4$
(2) $-1,1,3,5, \ldots a_{1}=-1, a_{n}=a_{n-1}+2$

Explicit Formula for Arithmetic Sequences
Let's consider $a_{n}=2 n-3$. Create the Damain/Range Chart from thus rule.

Domain	1	2	3	4	\cdots
Range	-1	1	3	5	\cdots

How do we go backwards \& get this formula back?

$$
\begin{aligned}
& \begin{array}{l}
\text { Domain } 12234 \\
\text { Range } \\
-1 \\
-1 \\
-1 \\
\hline
\end{array} \\
& a_{n}=2 n-3
\end{aligned}
$$

Explicit Formula: $a_{n}=d n+a_{0} \quad$ Note. You need to identify the " d " \& a_{0} (go backwards to get
[Examples] Find the expliat formula for the sequences.
(1) $-4,-6,-8,-10, \ldots$ (Also graph \#1)

Domain $1 \begin{array}{llllll}1 & 2 & 3 & 4 & \ldots\end{array} a_{n}=-2 n-2$
Range $-4 j^{-6} j^{8} v^{-10} \cdots$

$$
\int_{-2} \bigcup_{-2}^{0}{\underset{-2}{2}}_{0}^{0}
$$

please note: Arithmetic Sequences

(2) $12,15,18,21, \ldots$

| Domain | 1 | 2 | 3 | 4 | \cdots |
| :--- | :--- | :--- | :--- | :--- | :--- |$\quad a_{n}=4 n+8$

(3) $18,24,30,36, \ldots$
$\frac{\text { Domain } 1 \begin{array}{ccccc}1 & 2 & 3 & 4 & \cdots\end{array}}{\text { Range } 18 \text { 24 30 } 36 \cdots} \begin{gathered}12 \\ +6 \\ +6 \\ +6\end{gathered}$
[Example] Find a_{50} for the following sequences.
(1) $50,60,70,80, \ldots$

$$
\begin{aligned}
& \begin{array}{l|ccccc}
\text { amain } & 2 & 3 & 4 & \cdots
\end{array} \quad a_{n}=10 n+40 \\
& a_{50}=10(50)+40 \\
& =500+40 \\
& =540 \text {. }
\end{aligned}
$$

(2) $-14,-17,-20,23, \ldots$

$$
\begin{aligned}
a_{50} & =-3(50)-11 \\
& =-180-11 \\
& =-169
\end{aligned}
$$

[Examples] Write the reaursine formula in explicit form.
(1) $a_{1}=4, a_{n}=a_{n-1}-6$

The sequence is $4,-2,-8,-14, \ldots$

$$
\begin{aligned}
& \text { Daman } \\
& \text { Range } \\
& \text { Racccc} \\
& 10
\end{aligned}
$$

(2) $a_{1}=-3, a_{n}=a_{n-1}+10$

The sequence is $-3,7,17,27, \ldots$

$$
\begin{array}{c|ccccc}
\substack{0 \\
\text { Doming }} & 1 & 2 & 3 & 4 & \cdots
\end{array} \quad a_{n}=10 n-13
$$

This was createdidy keenan Xavier Leeftz01F. see my website for more information, lee-apcalculus.weebly.com.
[Example] Use the expriat formula to find the recursive formula.

$$
\text { (1) } \begin{array}{ll}
a_{n}=2 n-3 & \begin{aligned}
a_{1} & =2(1)-3 \\
& =2-3 \\
a_{1}=\square, & a_{n}=a_{n-1}+d \\
a_{1} & =-1, a_{n}=a_{n-1}+2
\end{aligned} \\
&
\end{array}
$$

(2) $a_{n}=-6 n+10$

$$
a_{1}=4, a_{n}=a_{n-1}-6
$$

$$
\begin{aligned}
a_{1} & =-6(1)+10 \\
& =4 .
\end{aligned}
$$

