4.2 Sketching Derivatives

Standards:
 MCA3
 MCA3a

This was created by Keenan Xavier Lee, 2013. See my website for more information, lee-apcalculus.weebly.com.

Old] Computing Derivatives Algebraically
Find the derivative of $f(x)$.

$$
\begin{aligned}
& f(x)=x^{3}-x \\
& f^{\prime}(x)=3 x^{2}-1
\end{aligned}
$$

new Sketching Derivatives (Graphically)
Let's consider the graph of the function: $f(x)=x^{3}-x$.

Goal: To graph (or sketch) the derivative of the function.

- We can estimate the value of the derivative at any value of x by determining (Or estimating) the slope of the tangent line at every arbitrary point $(x, f(x)$).
- When determining the new $x \& y$ cardin ales for the derivatives graph,
$\rightarrow x$-coordinates stay the same as the position functim's graph.
$\rightarrow y$-coordinates become a new y-coordinate being the slope of the at the corresponding x-value.
This was created by Keenan Xavier Lee, 2013. See my website for more information, lee-apcalculus.weebly.com.

Example 1] Sketch the derivative of this graph.

[Example]

This was created by Keenan Xavier Lee, 2013. See my website for more information, lee-apcalculus.weebly.com.
[Examples) Using $f(x)$, sketch $f^{\prime \prime}(x), f^{\prime \prime}(x), f^{\prime^{\prime \prime \prime}(x)}$, and $f^{(4) /(x) \text {. }}$

