4.3 Minimum \& Maximum Values

Standards:

MCA3
МСАЗb

Old Interpretation of Derivatives
For the following graphs, let's estimate the slopes of tangent lines at certain points:

(a) at $x=-6 \rightarrow$ Answer: 0
(b) at $x=4 \rightarrow$ Answer: -1
(c) at $x=-2 \rightarrow$ Answer: 0
(d) at $x=7 \rightarrow$ Anoweri D.N.E (Sharp corner)
conclusion At maximum \& minimum values the slope of the tangent line is 0 .
new Maximum \& Minimum Values
Absolute Maximum The largest y-value of a function attained among all the x-values in the domain of a function
An abs max occurs at $x=c$ if $f(c) \geq f(x)$ fir all $x^{\prime} s$ in the domain of $f(x)$.

Absolute Minimum
The in est y-value a functor mo attains among the x-values in the domain of a function.
An abs min occurs at $x=c$ if $f(c) \leq f(x)$ for all x 's in the domain of $f(x)$.

note: The Absolute min \& max values are called the EXTREME VALUES of a function.
Also note: Local min \& max values are "tops" \& "bottoms" of hills of a graph, but not necessarily the absolute high hest or lowest points.

The Extreme Value Theorem
If $f(x)$ is continuous on the closed interval $[a, b]$, then $f(x)$ attains its maximum \& min imam values somewhere in $[a, b]$

Fermat's Theorem
If $f(x)$ has a local max (or minimum) at $x=c$ \& $f^{\prime}(c)$ exists, then $f^{\prime}(c)=0$.
Let's consider $f(x)=x^{2}$.

$$
\begin{aligned}
& f(x)=x^{2} \\
& f^{\prime}(x)=2 x \\
& f^{\prime}(x)=2 x=0 \\
& \quad x=0 .
\end{aligned}
$$

There exists a max or min value at $x=0$.

A critical number of a function is a value (c) in the domain of $f(x)$ such that either:
(1) $f^{\prime}(c)=0$ or ${ }^{(2)} f^{\prime}(c) \rightarrow$ does not exist.
(Dur Goal.) A method for finding absolute maximum \& minimum values for a continuous function on a closed interval.

A Closed Interval Method -A way to locate the abs max \& min - values of a function or a closed interval

Step 1: Find the critical numbers of $f(x)$ on $[a, b]$
\longrightarrow need to take denvative, set $f^{\prime}(x)$ equal to zero \& solve for x.
Step 2: Evaluate $f(c)$ for all c's from Step 1. $c=$ critical \#'s
Step 3: Evaluate $f(a) \& f(b)$ separately.
Step 4: The largest value from step 2 and step 3 is the abs max. The smallest value is the abs min.
[Example 1] Find the abs max \& abs min of $f(x)=3 x^{4}-4 x^{3}$ on the closed interval $[-1,2]$.
Step 1:)

$$
\begin{gathered}
f(x)=3 x^{4}-4 x^{3} \\
f^{\prime}(x)=12 x^{3}-12 x^{2}=0 \\
12 x^{2}(x-1)=0 \\
x=0,1
\end{gathered}
$$

Step $2 / 3$ critical\#'s:
endpoints:

$$
\begin{aligned}
& f(0)=0 \\
& f(1)=-1
\end{aligned}
$$

$$
\begin{aligned}
& f(-1)=7 \\
& f(2)=16
\end{aligned}
$$

Step 4 The absolute maximum is 16 occurring at $x=2$ and the absolute minimum is -1 occunng at $x=1$.
[Example 2] Find the abs max\&min of $f(x)=\left(x^{2}-1\right)^{3}$ in $[-1,2]$.
Step 1

$$
\begin{aligned}
f(x) & =\left(x^{2}-1\right)^{3} \\
f^{\prime}(x) & =3\left(x^{2}-1\right)^{2}(2 x) \\
& =6 x\left(x^{2} \cdot 1\right)^{2}
\end{aligned}
$$

step 2/3

$$
\begin{aligned}
& f(0)=0 \\
& f(1)=0 \\
& f(-1)=-1
\end{aligned}
$$

$$
\begin{aligned}
f^{\prime}(x)= & 6 x\left(x^{2}-1\right)^{2}=0 \\
= & 6 x\left(x^{2}-1\right)\left(x^{2}-1\right) \\
= & 6 x(x-1)(x+1)(x-1)(x+1) \\
& x=0,1,-1
\end{aligned}
$$

critical\#'s

$$
\begin{aligned}
& \text { endponts: } \\
& f(-1)=-1 \\
& f(2)=27
\end{aligned}
$$

Step 4 The abs max is 27 occunng at $x=2$ and the abs min is -1 occaring at $x=-1$.

