4.4 Mean Value Therem

Standards:

[old Extreme Value Theorem
If $f(x)$ is continuous on the closed interval $[a, b]$, then $f(x)$ attains its abs max \& min somewhere on $[a, b]$.

[Example] Find abs max/min for $f(x)=z^{5}-80 x$ on $[-3,3]$.

Step 2/3: \quad critical \#'s
endpoints

$$
\begin{aligned}
& f(2)=-128 \\
& f(-2)=128
\end{aligned}
$$

$$
f(3)=3
$$

$$
f(-3)=-3
$$

Step 4: The abs max is 128 occurring at $x=2$ \& abs min is -128 occurring at $x=2$.

$$
\begin{aligned}
& f(x)=z^{4}-80 x \\
& 5 z^{4}-80=0 \\
& f^{\prime}(x)=5 z^{4}-80 \\
& S\left(z^{4}-16\right)=0 \\
& z^{4}-16=0 \\
& z^{4}=16 \\
& z=2,-2 \text {. }
\end{aligned}
$$

Hew Mean Value Themem
please note: The main result of this topic is the Mean Value Theorem. To pave \& understand this concept, we need to know the Roble's Theorem.
Basic Idea of Pole's Theorem

If the end point values of f are equal, then f must have an extreme value at some number strictly between the endpoints, provided that f is continuous on the interval \& f is differentiable, then $f^{\prime}(x)=0$.

Also note:

A slope might be 0 twice (or mure) between numbers Where the values of f are equal.

Roble's Theorem
So suppose that

1. $f(x)$ is continuous on $[a, b]$
2. $f(x)$ is differentiable on (a, b)
3. $f(a)=f(b)$

Then, there must exist at least a number c in $[a, b]$ such that $f^{\prime}(c)=0$.

Mean Value Theorem
So suppose that

1. $f(x)$ is continuous on $[a, b]$
2. $f(x)$ is differentiable on (a, b)

Then, there exists a number c in (a, b) swoon that

$$
f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}
$$

note'. The Mean Value Theovern is a mure general case of Roble's Theorem Which has additional hypothesis that $f(a)=f(b)$ and in conclusion states that there is a number c such that $f^{\prime}(c)=0$.
[Exampl e1] Find a point c satisfying the condusion of MVT for $f(x)=\frac{1}{x}$ in $[2,8]$.
First: Is f contionums on $[2,8]$? yes
Secund: Is f differentiable on $(2,8)$? yes
Now, $f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}$
Let $a=2 \& b=8^{b}-a^{-a}, \frac{f(8)-f(2)}{8-2}=\frac{-1}{16}$
Also, $f(c)=\frac{1}{c} \stackrel{\text { Rewrite }}{=} c^{-1} . \quad f^{\prime}(x)=-1 c^{-2}=\frac{-1}{c^{2}}$.
So now set $f^{\prime}(c)=\frac{-1}{16} \Longrightarrow \frac{-1}{c^{2}}=\frac{-1}{16}$

$$
\begin{aligned}
-c^{2} & =-16 \\
c^{2} & =16
\end{aligned}
$$

$$
\begin{aligned}
& c^{2}=16 \\
& c=+4
\end{aligned}
$$

[Example 2] Find a point c satisfying the conclusion of MVT for $f(x)=\sqrt{x}$ on $[9,25]$.
First: Is $\mathrm{contin} u \mathrm{ous}$ on $[9,25]$? yes
Second: Is f is differentiable on $(9,25)$? yes
N_{W}, $f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}$.
Let $a=9, b=25$. So, $\frac{f(25)-f(9)}{25-9}=\frac{5-3}{25-9}=\frac{1}{8}$
Also $f(c)=\sqrt{c}$. Now, $f^{\prime}(c)=\frac{1}{2} c^{-1 / 2}=\frac{1}{2 \sqrt{c}}$
So, $\quad \frac{1}{2 \sqrt{c}}=\frac{1}{8}$

$$
\begin{aligned}
& 8=2 \sqrt{c} \\
& 4=\sqrt{c} \\
& (4)^{2}=(\sqrt{c})^{2} \\
& 16=c
\end{aligned}
$$

Therefore, $c=16$ meeting MVT's requirements.

