4.4 Substitution Rule for Integration

Standards:		
MC11		
MC11d		
	1	

Recall: In order to apply power rule for antidonvatives, the function must be
$$\frac{Sum}{Sum}$$
.

(2) $\int x^2 - \sin x dx = \frac{x^3}{3} + \cos x + C$

(2) $\int x^2 + \sqrt{x} dx = \frac{x^{3}}{3} + \cos x + C$

$$= \frac{1}{3}x^3 + \frac{2}{3}x^3 + C$$

(3) $\int \frac{1-\sqrt{u}}{\sqrt{u}} du = \int \frac{1-u^2}{u^2} du = \int \frac{1}{u^2} - \frac{u^2}{u^2} du$

$$= \int u^{-1/2} - 1 du = \frac{u^{1/2}}{12} - u = 2u^{1/2} - u$$

[Old] Integration using power rule for antiderivatives

This was created by Keenan Xavier Lee, 2013. See my website for more information, lee-apcalculus.weebly.com.

 $= \left[2(4)^{\frac{1}{2}} - (4)\right] - \left[0\right] = 0.$

new Substitution Rule for Integration Now: What if we have to deal with composition of functions? $\frac{\text{Recall}}{}$ \rightarrow Chain Rule $\frac{d}{dx} f(g(x)) = f'(g(x)) \cdot g'(x)$ Now let's integrate this: $\begin{cases}
\frac{d}{dx} + (g(x)) = \left(\frac{d}{dx} + (g(x)) \cdot g'(x) \right)
\end{cases}$ $f(g(x)) = \int f(g(x)) \cdot g'(x) =$ Basic Idea When integrating a composition of functions, to compute them it is the "chain rule in reverse". U-substition Technique will help compute the "chain rule in reverse". Example) $(2x(x^2+1)^9 dx$ $\int \frac{2x(x^2+1)^9}{u=x^2+1} dx = \int u^9 du = \frac{u^{10}}{10} + C = \frac{(x^2+1)^{10}}{10} + C$ du = 2x dxCheck solution: $y = (x^2 + 1)^{10} = \frac{1}{10} (x^2 + 1)^{10}$ His was realether kexnan xavier Lee 22013. See my website for more information, lee-apcalculus.weebly.com.

$$u=x^{4}+2$$

$$du=4x^{3}dx \Rightarrow \frac{1}{4}du=x^{2}dx$$

$$= \frac{1}{4}\sin(x^{7}+2)+c$$

							2 (1+4	2) 4	
							3 (11/	7 10	
						=	2/1+	X2 + (,
							3		
) (x³ cos	(× ⁴ +2)	d×	= 1	· Cos u	du :		u+C	
- X	4+2-					=	nja	(x ⁴ +2)+	- (
=4	+x3 dx	$\Rightarrow \pm a$	hu=2d	(7		
		4							
	This was crea	ited by Keena	ın Xavier Lee,	2013. See my v	vebsite for mor	e informatio	n, lee-apcalculus.	weebly.com.	

2 $\int xe^{x^2}dx = \frac{1}{2} \int e^u du = \frac{1}{2} e^u + c = \frac{1}{2} e^{x^2} + C$

 $3 \int 2x \sqrt{1+x^2} du = \int \sqrt{u} du = \int \sqrt{u^2} du = \frac{u^{3/2}}{\frac{3}{2}} + C$ $u = 1 + x^2$ $= \frac{2}{3} u^{3/2} + C$

 $u=x^{2}$ $du=2x dx \Rightarrow \frac{1}{2}du=x dx$

 $y' = \frac{1}{2}e^{x^2} \cdot 2x$

(4)

Check solution: $y = \frac{1}{2}e^{x^2} + C$

(5) $\left(\sqrt{2x+1} dx \right) \Rightarrow \frac{1}{2} \left(\sqrt{y} dy \right) = \frac{1}{2} \left(\sqrt{y^2} dy \right) = \frac{1}{2} \frac{y^{3/2}}{\frac{3}{2}} + C$

 $G \int \cos 3x \, dx = \frac{1}{3} \int \cos u \, du = \frac{1}{3} \sin u + C$

 $=\frac{1}{7}\left(\frac{2}{3}\right) N^{3/2} + C$

 $=\frac{1}{3}(2x+1)^{3/2}+c$

 $=\frac{1\sqrt{2x+y^2}}{3}+C$

 $=\frac{1}{3}\sin(3x)+c$

u = 2x + 1 $du = 2dx \Rightarrow \frac{1}{2}du = dx$

U=3x $du=3dx \Rightarrow \frac{1}{3}du=dx$

Trigonometric s	Substitution			
With integrating	trig functions,	the basic idea echnique	is to:	
2) use u	- substitution +	chnia ne		
J William	300 3111			
This was created	d by Keenan Xavier Lee, 20	13. See my website for more	information, lee-apcalculus.weebly.com.	