4.4 Systems of Circles Parabolas \& Lines
old Systems of Linear Equations
Let's recall what system of equations means. Systems of Equations is a simultaneous set of lines (or curves) meeting at common point (s).
Let's consider the system of linear equations $\left\{\begin{array}{l}y=2 x+1 \\ y=-2 x-3\end{array}\right.$
What are the different methods one can use to solve systems of linear equations?
\measuredangle let's use
(1) Graphing
(2) Substitution
(3) Elimination
at least of the
variable in one eft
must be solved for.
Solve for the common point using substitution method.

$$
\left\{\begin{array}{l}
y=2 x+1 \\
y=-2 x-3
\end{array}\right.
$$

$$
\begin{aligned}
& y=2(-1)+1 \\
& y=-2+1 \\
& y=-1
\end{aligned}
$$

Graph the 2 lines to show system \& common point.

$$
\begin{aligned}
2 x+1 & =-2 x-3 \quad \text { get } y: \text { sub - 1for } x
\end{aligned}
$$

$$
+2 x=+12 x
$$

$$
4 x+\frac{7}{1}=-3
$$

$$
-1=-1
$$

$$
\frac{4 x}{4}=\frac{-4}{4}
$$

$$
x=-1
$$

$(-1,-1)$
new Sy stem of Circles, Parabolas, and/or lines.
Let's consider the following graph:
Find the common points algebraically (Solve the system)

$$
\begin{aligned}
& \left\{\begin{array}{l}
x^{2}+y^{2}=25 \\
y=3 x-5
\end{array}\right. \\
& x^{2}+(3 x-5)^{2}=25 \\
& x^{2}+(3 x-5)(3 x-5)=25 \\
& x^{2}+9 x^{2}-15 x-15 x+25=25 \\
& 10 x^{2}-30 x+25=25 \\
& -25=-25 \\
& 10 x^{2}-30 x=0 \\
& 10 x(x-3)=0 \\
& x=0,3
\end{aligned}
$$

A circle \& a line .

Find the y 's:
when $x=0 \quad$ when $x=3$

$$
\begin{array}{ll}
y=3(0)-5 & y=3(3)-5 \\
y=-5 & y=4
\end{array}
$$

Common points are $(0,-5)$ and $(3,4)$.
note'. Use substitution method is usually the best \& efficient

[Example 1] Solve the simultaneous equations $\left\{\begin{array}{l}x^{2}+y^{2}=10 \\ y=x+2\end{array}\right.$.
(A circle \& a line)

$$
\begin{gathered}
x^{2}+y^{2}=10 \\
y=x+2 \\
x^{2}+(x+2)^{2}=10 \\
x^{2}+(x+2)(x+2)=10 \\
x^{2}+x^{2}+2 x+2 x+4=10 \\
2 x^{2}+4 x+4=10 \\
2 x^{2}+4 x-6=0 \\
2\left(x^{2}+2 x-3\right)=0 \\
2(x+3)(x-1)=0 \\
x=-3, x=1
\end{gathered}
$$

Find y :

$$
\begin{array}{ll}
\begin{array}{ll}
\text { when } x=-3 \\
y=(-3)+2 & \text { when } x=1 \\
y=(1)+2 \\
y=-1 & y=3
\end{array} \\
=(-3,-1) \text { and }(1,3)
\end{array}
$$

[Example 3] Solve the system when a parabola \& line intersect

$$
\left\{\begin{array}{l}
y=x^{2}+4 x-1 \\
y=7 x+9
\end{array}\right.
$$

$$
x^{2}+4 x-1=7 x+9
$$

$$
x^{2}-3 x-10=0
$$

Find y :

$$
(x-5)(x+2)=0
$$

$$
x=5, x=-2
$$

$$
\begin{array}{ll}
\text { when } x=5 & \text { when } x=-2 \\
\begin{array}{ll}
y=7(5)+9 & y=7(-2)+9 \\
=44 & y=-5
\end{array}
\end{array}
$$

Common points are $(5,44)$ and $(-2,-5)$.

