4.6 Second Derivatives Test

Standards:

MCA3
MCA3b
[Old] Sketching Derivatives - sketch f'andf"

new Second Derivatives Test
Let's consider the function: $f(x)=x^{3}-x$.
Coal: The same as the First Derivatives Test. To sketch graph using characteristics found by using function ONLY!

The Second Derivatives gives:
(1) concavity - local max/ local ming
(2) Inflection points

What is concavity?

- Just as the slope of the tangent line to the graph at the point $(x, f(x))$ describes the behavior of a function, concavity describes the behavior of the slope.
- As x increases (graph goes from left to right) on the following is true:
\longrightarrow concavity is positive - so the slope is slowly increases $\uparrow \hat{}$ "smile" concave up
\rightarrow concavity is negative - so the slope is slowly decrease $\downarrow " f r o m n " ~ c o n c a v e ~ d o w n ~$
\longrightarrow Concavity is equal to zero, so the slope is constant.

Let's consider these 2 cases:

- f is increasing
- $f^{\prime}>0, f^{\prime}$ is increasing (getting steeper)
- $f^{\prime \prime}>0$

- f is decreasing
- $f^{\prime}<0, f^{\prime}$ is decreasing
(less steep)
- $f^{\prime \prime}<0$

Concavity Test

- If $f^{\prime \prime}>0$ on an interval, then the graph of f is concave up $\hat{0}$ - "smiling"
- If $f^{\prime \prime}<0$ on an interval, then the graph of f is concave dion \downarrow-"frowning"
- Points where the concavity changes are inflection points.
[Example 1] $f(x)=x^{4}-2 x^{2}$.

$$
\begin{aligned}
& f(x)=x^{4}-2 x^{2} \\
& f^{\prime}(x)=4 x^{3}-4 x \\
& f^{\prime \prime}(x)=12 x^{2}-4=0 \quad \uparrow \uparrow \\
& 4\left(3 x^{2}-1\right)=0 \\
& 3 x^{2}-1=0 \\
& x^{2}=\frac{1}{3} \\
& x= \pm \sqrt{\frac{1}{3}}
\end{aligned}
$$

Interval of Concave Up: $\left(-\infty,-\sqrt{\frac{1}{3}}\right) \cup\left(\sqrt{\frac{1}{3}}, \infty\right)$
Interval of Concave Donn: $\left(-\sqrt{\frac{1}{3}}, \sqrt{\frac{1}{3}}\right)$
Points of Inflection: $\left(-\sqrt{\frac{1}{3}}, f\left(-\sqrt{\frac{1}{3}}\right)\right)$ and

$$
\left(\sqrt{\frac{1}{3}}, f\left(\sqrt{\frac{1}{3}}\right)\right)
$$

