4.81 mproper $\operatorname{Integrals}$

[OLd] Area -Integration
Let's consider the function: $f(x)=e^{-x}$. Graph the function and find the area between $x=0$ and $x=2$.

Need to integrate:

$$
\left.\left.\int_{0}^{2} e^{-x} d x=-\int_{0}^{2} e^{u} d u=-e^{u}\right]_{0}^{2}=-e^{-x}\right]_{0}^{2}=\left[-e^{-(2)}\right]-\left[-e^{0}\right]=\frac{-1}{e^{2}}+1 .
$$

We were able to use integration to be able to find the area between 2 boundaries.
new Improper Integrals
Let's consider the past graph of the function:

Before: finding area between 2 boundaries

Now:- finding area when one sided is unbounded or both sides are unbounded.

Case 1: Infinite Integrals, where an infinity is either at one or both limits of integration
1] If $f(x)$ is continuous on $[a, \infty)$, then $\int_{a}^{\infty} f(x) d x=\lim _{\rightarrow \infty} \int_{a}^{t} f(x) d x$
[2] If $f(x)$ is continuous on $\left(-\infty, a\right.$, then $\int_{-\infty}^{a} f(x) d x=\lim _{t \rightarrow-\infty} \int_{t}^{a} f(x) d x$
[3) If $f(x)$ is continuous on $(-\infty, \infty)$, then

$$
\int_{-\infty}^{\infty} f(x) d x=\int_{-\infty}^{c} f(x) d x+\int_{c}^{\infty} f(x) d x
$$

(where c is some real number)

Solutions can be either:
a convergent - the limit exist \& is a real number.
(b) divergent - the limit fails to exist \& is infinite ($-\infty$ or ∞).

Suppose we want to find the area starting from 0 going towards positive infinity (∞). How do we find the area?

$$
\begin{aligned}
& \begin{array}{c}
\left.\left.\int_{0}^{\infty} e^{-x} d x=\lim _{t \rightarrow \infty} \int_{0}^{t} e^{-x} d x=\lim _{t \rightarrow \infty} \int_{0}^{t} e^{u} d u=\lim _{t \rightarrow \infty}-e^{u}\right]_{0}^{t}=\lim _{t \rightarrow \infty}-e^{-x}\right]_{0}^{t} \\
d u=-x \\
-d u=-1 d x
\end{array} \\
& =\lim _{t \rightarrow \infty}\left[-e^{-t}--e^{0}\right]=\lim _{t \rightarrow \infty} \frac{-e^{-t}}{\sqrt{v}}+1=0+1=1, \text { convergent. }
\end{aligned}
$$

[Examples] Integrate.

$$
\begin{aligned}
& \text { (1) } \left.\int_{1}^{\infty} \frac{d x}{x^{3}}=\lim _{t \rightarrow \infty} \int_{1}^{t} \frac{1}{x^{3}} d x=\lim _{t \rightarrow \infty} \int_{1}^{t} x^{-3} d x=\lim _{t \rightarrow \infty} \frac{x^{-2}}{-2}\right]_{1}^{t} \\
& \left.=\lim _{t \rightarrow \infty} \frac{-1}{2 x^{2}}\right]_{1}^{t}=\lim _{t \rightarrow \infty}\left[\frac{-1}{2 t^{2}}-\frac{-1}{2(1)}\right]=\lim _{t \rightarrow \infty}\left[\frac{\left(-\frac{1}{2 t^{2}}\right.}{J_{0}}+\frac{1}{2}\right] \\
& =0+\frac{1}{2}=\frac{1}{2}, \text { convergent. }
\end{aligned}
$$

$$
\begin{aligned}
& \text { (2) } \left.\int_{1}^{\infty} \frac{1}{x} d x=\lim _{t \rightarrow \infty} \int_{1}^{t} \frac{1}{x} d x=\lim _{t \rightarrow \infty} \ln |x|\right]_{1}^{t}=\lim _{t \rightarrow \infty}[\ln |t|-\ln |1|] \\
& =\lim _{t \rightarrow \infty} \frac{\ln |t|-0]=\infty-0=\infty ; \text { divergent. }}{\downarrow_{\infty}}
\end{aligned}
$$

$$
\begin{aligned}
& \text { (3) } \int_{0}^{\infty} \frac{2 d x}{x^{2}+4 x+3}=\lim _{t \rightarrow \infty} \int_{0}^{t} \frac{2}{(x+3)(x+1)} d x \\
& \Rightarrow \frac{2}{(x+3)(x+1)}=\frac{A}{x+3}+\frac{B}{x+1} \\
& 2=A(x+1)+B(x+3) \\
& 2=A x+A+B x+3 B \\
& x: 0=A+B \Rightarrow 0=A+B \\
& \text { constart: } 2=A+3 B \Rightarrow-2=-A-3 B \\
& -2=-2 B \text { FindA: } 0=A+(1) \\
& 1=B \quad-1=A \\
& \left.\lim _{t \rightarrow \infty} \int_{0}^{t} \frac{-1}{x+3}+\frac{1}{x+1} d x=\lim _{t \rightarrow \infty}-\ln |x+3|+\ln |x+1|\right]_{0}^{t}= \\
& =\lim _{t \rightarrow \infty}-\ln |t+3|+\ln |t+1|+\left[(\ln |3| 9 \ln |1|]=\lim _{t \rightarrow \infty} \ln \left|\frac{t+1}{t+3}\right|+\ln 3\right.
\end{aligned}
$$

(4) $\int_{-\infty}^{\infty} e^{x} d x=\lim _{t \rightarrow-\infty} \int_{t}^{0} e^{x} d x+\lim _{t \rightarrow \infty} \int_{0}^{t} e^{x} d x$
evaluate@

$$
\begin{aligned}
& \left.\lim _{t \rightarrow-\infty} \int_{t}^{0} e^{x} d x=\lim _{t \rightarrow-\infty} e^{x}\right]_{t \rightarrow \infty}^{0}=\lim _{t \rightarrow \infty} e^{0}-e^{t}=\lim _{t \rightarrow-\infty} 1-e^{t} \\
& =1-0=1
\end{aligned}
$$

evaluate (b) $\left.\lim _{t \rightarrow \infty} \int_{0}^{t} e^{x} d x=\lim _{t \rightarrow \infty} e^{x}\right]_{0}^{t}=\lim _{t \rightarrow \infty} e^{t}-e^{0}=\lim _{t \rightarrow \infty} e^{t}-1$

$$
=\infty-1=\infty
$$

So, $1+\infty=\infty$; divergent

