5.1 Venn Diagrams,

Overlapping Events \&
Mutually Exclusive Events

Old d Simple Probability
Notation:
Probability of an event = P(event)
Formula:

$$
P(\text { event })=\frac{\# \text { of selected }}{\text { Total amount }}
$$

[Examples] Maria has a bag full of marbles -4 red marbles, 8 grey marbles, 3 blue marbles, 5 yellow marbles.
(1) What's the probability that Maria picks a blue marble?

$$
P(\text { blue marble })=\frac{3}{20}=0.15 \quad 159_{0}
$$

(2) What's the probability that Maria picks a grey marble?

$$
P(\text { grey marble })=\frac{8}{20}=\frac{2}{5}=0.4
$$

(3) What's the probability that Maria picks a red marble?

$$
P(\text { red marble })=\frac{4}{20}=\frac{1}{5}=.2
$$

new-A Sample Space

- Sample Space - the set of all possible outcomes for an event. "The universe".
(Example) Let's consider a dice. What is the sample space for this object.

$$
\{1,2,3,4,5,6\} \longleftarrow \text { Sample }
$$

- Subset - a part of the sample space (universe).
(Example) Let's consider a dice. What is the sample space for this object.

However, only take into consideration the even outcomes.
 3 possibilities of the
6 possible outcomes

$$
\{2,4,6\}
$$

C-symbol for subset.

$$
\begin{aligned}
& \{2,4,6\} \subset\{1,2,3,4,5,6\} \\
& \text { " } 2,4,6 \text { is a subset of } 1,2,3,4,5,6 .
\end{aligned}
$$

COMPOUND EVENTS - combines 2 or more events using the Set Notation

- $A V B$ - "union" - everything in both sets
- $A \cap B$ - "ind" "intersection" - only what is common in both sets
- A^{\prime} - complement (or opposite) - eventhing NoT in set A
[Example] Consider set blue \& set red.
(1) BueVRed $=\{1,2,8,11,4,5,10,3,9\}$
(2) Blue $\cap \operatorname{Red}=\{3,9\}$
(3) Blue' $=\{4,5,10,6,7\}$

(4) $(\text { Blue } \cup \operatorname{Red})^{\prime}=\{6,7\}$
(5) $(\text { Blue } \cap \operatorname{Red})^{\prime}=\{1,2,8,11,4,5,10,6,7\}$
(6) $\operatorname{Red}^{\prime}=\{1,2,3,8,11,3,9,6,7\}$

This was created by Keenan Xavier Lee - 2014. See my website for more information, lee-apcalculus.weebly.com.
[Example] Consider set Keener \& set Collins.
(1) Keener \cap Collins $=\{M, L\}$
(2) Keener ${ }^{\prime}=\{M, L, C, O, P, Q\}$
(3) Keener \cup Collins $=\{A, K, S, C, O, M, L\}$

(4) Collins' $=\{M, L, A, K, S, P, Q\}$
(5) (Keener \cap Collins $)^{\prime}=\{C, O, A, K, S, P, Q\}$
(6) $P($ Keener $)=\frac{5}{9}=.55=55 \%$
(7) $P($ Collins $)=\frac{4}{9}=. \overline{44}=44.4 \%$
(8) $P($ Keener' $)=\frac{6}{9}=\overline{66}=66.6 q_{0}$
new-B Compound Probability
Compound Probability - the probability of 2 or more events using the word "and" or the word "or".

- "or " $-U \rightarrow P(A) \cup P(B)=P(A)+P(B)$
- "and" $-\cap \rightarrow P(A) \cap P(B)=P(A) * P(B)$
[Examples] Maria has a bag full of marbles -4 red marbles, 8 grey marbles, 3 blue marbles, 5 yellow marbles.
(1) What's the probability Maria will get a blue marble or a grey marble?

$$
P(\text { blue }) \text { or } P(\text { grey })=P(\text { blue })+P(\text { grey })=\frac{3}{20}+\frac{8}{20}=\frac{11}{20}=.55
$$

(2) What's the probability Maria will get a red marble and a yellow marble?

$$
P(\text { red }) \text { and } P(\text { yell } w)=P(\text { red }) \cap P(\text { yellow })=\frac{4}{20} * \frac{5}{20}=\frac{1}{20}=.05
$$

(3) What's the probability Maria will get 2 grey marbles?

$$
P(\text { grey }) \text { and } P(\text { grey })=\frac{8}{20} * \frac{8}{20}=\frac{4}{25}=.16 \quad 16 \%
$$

(4) What's the probability Maria will not get blue marbles?

$$
P\left(\text { blue }{ }^{\prime}\right)=\frac{4+8+5}{20}=\frac{17}{20}=.85
$$

(5) What's the probability Maria will orange marbles?

$$
P(\text { orange })=0=0 q_{0}
$$

This was created EyOeenan Xavier Lee - 2014. See my website for more information, lee-apcalculus.weebly.com.
new-C Mutually Exclusive \& Overlapping

- Mutually Exclusive - 2 or more simultaneous events that have no common outcomes.
(Example)
Set Numbers set Letters

No common outcomes!

Let's consider a deck of cards.
52 total cards, 4 suits, 13 cards in each suit.
What is the probability that Myagets a King or gets a Ace?
\rightarrow Mutually Exclusive $=$ no common outcomes

$$
\begin{align*}
& \rightarrow \text { Mutually Exclusive }=\text { no common outcomes supt the case colder } \tag{1520}\\
& \text { out } \\
& P\left(\text { King or } P(\text { Ace })=P(\text { King })+P(\text { Ace })=\frac{4}{52}+\frac{4}{52}=\frac{8}{52}=\frac{2}{13} \approx .15\right.
\end{align*}
$$

- Overlapping - events that have at least one comm on Outcome.
(Example)

Common Outcomes

Let's consider a deck of cards.
52 total cards, 4 suits, 13 cards in each suit.
What is the probability that My gets a heart or gets a Ace?
\longrightarrow Overlapping Events $=$ Ace that's heart make sure Not to count it

$$
\begin{aligned}
P\left(\text { heart) or } P \left(A(e)=P(\text { heart })+P\left(A(e)=\frac{13}{52}+\frac{(4-1)}{(52-1)}\right.\right.\right. & =\frac{13}{52}+\frac{3}{51} \\
& =\frac{21}{68} \approx .31
\end{aligned}
$$

32%

