5.2 Independent \& Dependent Events

Old Mutually Exclusive \& Overlapping Events
Let's consider a deck of cards.
52 cards, 4 suits, 13 cards in suit.
(1) What's probability Jordan will pick 2 red cards?

$$
\begin{aligned}
& P(\text { red card }) \text { and } P(\text { red card })=P(\text { red }) * P(\text { red })=\frac{26}{52} * \frac{26}{52}=\frac{1}{4}=\frac{.25}{259} \\
& \text { Mutually Exclusive }
\end{aligned}
$$

(2) What's probability Jordan will pick a red and a jack?

$$
\begin{aligned}
P(\text { red }) \text { and } P(\text { jack })=P(\text { red }) * P(\text { jack })=\frac{26}{52} * \frac{(4-2)}{(52-2)} & =\frac{26}{52} * \frac{2}{50} \\
\text { Overlapping } & =\frac{1}{50}=.02
\end{aligned}
$$

2\%
new Independent \& Dependent Events

- Independent Events - "A" occurring does NoT affect the probability of "B" occurring.
note: Calculating probability is not being affect.
with replacement y

This was created by Keenan Xavier Lee - 2014. See my website for more information, lee-apcalculus.weebly.com.
[Example] Maria has a bag full of marbles - 4 red marbles, 8 grey marbles, 3 blue marbles, 5 yellow marbles.
(1) What's the probability Maria first draws a blue marbles, then secondly draws a grey marble with replacement?

$$
P(\text { blue }) \text { and } P(\text { grey })=P(\text { blue }) * P(\text { grey })=\frac{3}{52} * \frac{8}{52}=\frac{3}{338} \approx .008
$$

- Dependent Events - " A " occurring affects the probability of " B " occurring
note:. Calculating Probability will be effected (subtracting will happen) Without replacements,
[Example] Maria has a bag full of marbles -4 red marbles, 8 grey marbles, 3 blue marbles, 5 yellow marbles.
(2) What's the probability Maria fist draws a blue marbles, then secondly draws a grey marble without replacement?

$$
\begin{equation*}
P(\text { blue }) \text { and } P(\text { grey })=P(\text { (blue }) * P(\text { grey })=\frac{3}{52} * \frac{8}{51}=\frac{2}{221} \approx .009 \tag{96}
\end{equation*}
$$

Determining if events are INDEPENDENT
If an event is independent, then $P(A \cap B)=P(A) * P(B)$
substitute what's given \& verify that the left side equal right side.
[Example] Let event $M=$ talking a math class. Let events = taking science class. Then let event M\&S = taking a math \& science class. Suppose $P($ math $)=0.6, P($ science $)=0.5$ and $P($ Math and Science $)=0.3$. Are Math \& Seance independent?

$$
\begin{gathered}
P(A \cap B)=P(A) * P(B) \\
P(\text { Math and Science }=P(\text { Math }) * P(\text { Science }) \\
0.3=0.6 * 0.5 \\
0.3=0.3 \vee \text { True }
\end{gathered}
$$

So, taking math class \& taking science class are independent of each other.

