5.3 Conditional Probability From Tables
old Compound Probability
Let's consider a deck of cards: 52 cards, 4 suits, 13 cards in suits.
(1) What's the probability that Michael will select 2 Kings without replacement?

$$
\begin{equation*}
P(\text { king }) \cap P(\text { king })=P(\text { king }) * P(\text { King })=\frac{4}{52} * \frac{4}{52}=\frac{1}{169}=.005 \tag{52}
\end{equation*}
$$

(2) What's the probability that Myna will select a king or a queen with replacement?

$$
P(\text { king }) \cup P(\text { Queen })=P(\text { king })+P(\text { Queen })=\frac{4}{52}+\frac{4}{51}=\frac{103}{663}=.16
$$

(3) What's the probability that Jordan will draw a spade and then a Jack?

$$
P(\text { spade }) \cap P(\text { Sack })=P(\text { spade }) * P(\text { Jack })=\frac{13}{52} * \frac{(4-1)}{(52-1)}=\frac{13}{52} * \frac{3}{51}=\frac{1}{68} \approx .02
$$

new Conditional Probability

- Conditional Probability - contains a condition that restricts (or limits) the sample space for an event.
notation $P(A \mid B) \Longrightarrow$ "The probability of event A, given event B occurs"
Basically you are narrowing your possibilities only to " B " \& out of those " B " possibility find out his many " A " there are actually is.
Let's consider the table showing the results of a survey, "Do you own a pet?"

	yes	N_{0}
Female	8	6
Male	5	7

[Examples] Find the probabilities.
(1) P

$$
\begin{aligned}
P(\text { own a pet } \mid \text { female }) & =\text { out of } 14 \text { females, } 8 \text { own a pet. } \\
& =\frac{8}{14} \approx .57 \quad 57 \%
\end{aligned}
$$

(2)

$$
\begin{aligned}
P(\text { female } \mid \text { own a pet }) & =\text { out of } 13 \text { pet owners, } 8 \text { are a females } \\
& =\frac{8}{13} \approx 62 \quad 62 \%
\end{aligned}
$$

This was created by Keenan Xavier Lee - 2014. See my website for more information, lee-apcalculus.weebly.com.
[Examples] The table shows the results of a class survey, "Do you wash the dish hes last night?"

	Yes	No
Female	7	6
Male	7	8

(a) What's the probability that a student washed dishes given the student is male?

$$
\begin{aligned}
P(\text { washed dishes }(\text { male }) & =\text { out of } 15 \text { males, } 7 \text { washed dishes. } \\
& =\frac{7}{15} \approx 4 \overline{6}=46.6 \%
\end{aligned}
$$

(b) $P($ female washed dishes $)=$ out of 14 students who washed dishes, 7 were female

$$
\begin{equation*}
=\frac{7}{14}=\frac{1}{2}=.5 \tag{0}
\end{equation*}
$$

* Remember - Joint Frequencies!

For word problems... use formula

$$
P(A \mid B)=\frac{P(A) \cap P(B)}{P(B)}=\frac{P(A) * P(B)}{P(B)}
$$

[Example] At lithia Springs, the probability that a student takes environmental science \& geography is 0.25 . The probability that takes environ ament science is 0.72 . What is the probability that a student takes geography given that the student is taking environmental science?

$$
\begin{aligned}
P(\text { geography } & \text { enviroment science })
\end{aligned}=\frac{P(\text { geography }) \cap P(\text { envirumentalscience })}{P(\text { environmental science })}
$$

