5.4 Volumes of Solids of Revolution Shell Method

Standards:
MCI
MCIIc
\qquad
\qquad
\qquad

This was created by Keenan Xavier Lee, 2013. See my website for more information, lee-apcalculus.weebly.com.

Old] Volumes of solids of Revolutions (DISK METHODS)
Find the volume of the solid of $y=x^{2}$ and $x=0$ and rotate it about the y-axis from $y=0$, to $y=4$.

$$
\begin{aligned}
V & =\int_{0}^{4} \pi(f(y))^{2} d y=\int_{0}^{4} \pi(\sqrt{y})^{2} d y=\pi \int_{0}^{4} y d y=\pi\left[\frac{y^{2}}{2}\right]_{0}^{4}=\pi\left[\frac{(4)^{2}}{2}\right]-\left[\frac{(0)^{2}}{2}\right] \\
& =\pi\left[\frac{16}{2}\right]=(4 \pi)
\end{aligned}
$$

This was created by Keenan Xavier Lee, 2013. See my website for more information, lee-apcalculus.weebly.com.
more old... Area between curves

$$
\begin{array}{ll}
x^{2}=\sqrt{x} & \text { Area }=\int_{0}^{1}[\sqrt{x}]-\left[x^{2}\right] d x=\int_{0}^{1} x^{1 / 2}-x^{2} d x=\frac{x^{3 / 2}}{3 / 2}-\frac{x^{3}}{3} \\
\left(x^{2}\right)^{2}=(\sqrt{x})^{2}=x & \\
\begin{array}{ll}
x^{4}-x=0 \\
x\left(x^{3}-1\right)=0 \\
x=0,1
\end{array} & \left.=\frac{2}{3} x^{3 / 2}-\frac{x^{3}}{3}\right]_{0}^{1}=\left[\frac{2}{3}(1)^{3 / 2}-\frac{(1)^{3}}{3}\right]-\left[\frac{2}{3}(0)^{3 / 2}-\frac{(0)^{3}}{3}\right] \\
& =\frac{2}{3}-\frac{1}{3}=\left(\frac{1}{3}\right.
\end{array}
$$

Let's consider the functions $f(x)$ and $g(x)$. Find the volume of revolution of the solid revolving around the x-axis.

This was created by Keenan Xavier Lee, 2013. See my website for more information, lee-apcalculus.weebly.com.
[Exande1] Find the volume
of the solid generated about
the x-axis by $y=\sqrt{x}$ and $y=x$.

$$
\begin{aligned}
& x^{2}=\sqrt{x} \\
& \left(x^{2}\right)^{2}=(\sqrt{x})^{2} \\
& x^{4}=x \\
& x^{4}-x=0 \\
& x\left(x^{3}-1\right)=0 \\
& x=0,1 .
\end{aligned}
$$

[Example 2] Find the volume of reooution bounded by $y=e^{x}, y=e, x=0, x=1$ \& resole about x-axis.

$$
V=\int_{0}^{1}
$$

