6.1 Introduction to Sequences

Old Evaluating Limits
Let's recall the differences between:
$\lim _{x \rightarrow a} f(x)=L$ as x-value approaches a, the y-values approaches L.
$\lim _{x \rightarrow \infty} f(x)=L$ as x goes toward infinity (∞), the y-values approaches a horizontal asymptote

When evaluating $\lim _{x \rightarrow a} f(x)=L$, you can either use:

- expanding - multiply by conjugate
- factor
- L'Hospital's Rule*
- common denominator

When evaluating $\lim _{x \rightarrow \infty} f(x)=L$, you can either use: - L'Hospital's Rule
[Remember $\lim _{x \rightarrow \infty} \frac{1}{x}=0$.

- mutiny numerador/denominator by degree in the denominator
[Examples] Evaluate.

$$
\begin{aligned}
& \text { (1) } \lim _{x \rightarrow 1} \frac{x^{2}+x-2}{x-1}=\frac{0}{0} \\
& \lim _{x \rightarrow 1} \frac{x^{2}+x-2}{x-2}=\lim _{x \rightarrow 1} \frac{2 x+1}{1}=\frac{2(1)+1}{1}=3
\end{aligned}
$$

(2) $\lim _{x \rightarrow \infty} \frac{x^{2}+x-2}{x-1}$

$$
\lim _{x \rightarrow \infty} \frac{x^{2}+x-2}{x-1}=\lim _{x \rightarrow \infty} \frac{2 x+1}{1}=\lim _{x \rightarrow \infty} 2 x+1=\infty \text {; divergent. }
$$

This was created by Keenan Xavier Lee, 2013. See my website for more information, lee-apcalculus.weebly.com.
(3) $\lim _{x \rightarrow \infty} \frac{2 x^{2}+x-1}{x^{2}+x-2}$

$$
\lim _{x \rightarrow \infty} \frac{2 x^{2}+x-1}{x^{2}+x-2} \stackrel{\text { LH }}{=} \lim _{x \rightarrow \infty} \frac{4 x+1}{2 x+1} \stackrel{\text { LH }}{=} \lim _{x \rightarrow \infty} \frac{4}{2}=2
$$

new Introduction to Sequences
A sequence is an infinite, ordered list of numbers:

$$
a_{1}, a_{2}, a_{3}, a_{4}, \ldots \quad \text { (sometimes it come start with index } 0 \text {) }
$$

[Notation of Sequences]

- a_{n}-where n is referring to the term number in the sequence.
(Example) $12,24,36,48, \ldots$

$$
\begin{array}{llll}
\downarrow & \downarrow & \downarrow & \downarrow \\
a_{1} & a_{2} & a_{3} & a_{4}
\end{array}
$$

- Brace Notation is often used to represent sequences:

$$
\left\{a_{n}\right\}_{n=1}^{\infty} \text { or simply }\left\{a_{n}\right\}
$$

(Example) $1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \ldots$
represented as $\left\{\frac{1}{n}\right\}_{n=1}^{\infty}$
(Example) $\left\{\frac{(-1)^{n-1}}{n^{2}}\right\}_{n=1}^{\infty} \quad$ The terms of the sequence are:
This was created by Keenan Xavier Lee, 2013. See my website for more information, lee-apcalculus.weebly.com.

FACD The values in the range are called the term of the sequence.
Domain: $123345 \cdots n$ (position in the sequence)

Range: $\begin{array}{lllllll} & a_{1} & a_{2} & a_{3} & a_{4} & a_{5} & \cdots\end{array} a_{n}$ (the actual sequence)
(Example) For the sequence $12,24,36,48, \ldots$, label the domain \& range.
Domain $\left\lvert\, \begin{array}{llllll} & 2 & 3 & 4 & \cdots\end{array}\right.$ which can be written as ordered pair:
Range $122243648 \cdots$

$$
(1,12),(2,24),(3,36),(4,48), \ldots
$$

[The Limit of a Sequence]
Let's consider the sequence $\left\{\frac{n^{2}+5}{n^{2}+5 n}\right\}_{n=1}^{\infty}$. Determine $\lim _{n \rightarrow \infty} a_{n}$.

$$
\left\{\frac{n^{2}+5}{n^{2}+5 n}\right\}_{n=1}^{\infty}=1, \frac{9}{14}, \frac{7}{12}, \frac{7}{12}, \frac{3}{5}, \frac{41}{66}, \frac{9}{14}, \frac{69}{104}, \frac{43}{63}, \frac{7}{10}, \frac{63}{88}, \ldots
$$

$$
\lim _{n \rightarrow \infty} \frac{n^{2}+5}{n^{2}+5 n}=\lim _{x \rightarrow \infty} \frac{x^{2}+5}{x^{2}+5 x} \text { LH } \lim _{x \rightarrow \infty} \frac{2 x}{2 x+5} \text { L'H } \lim _{x \rightarrow \infty} \frac{2}{2}=\text { (1) }
$$

This was created by Keenan Xavier Lee, 2013. See my website for more information, lee-apcalculus.weebly.com.

Definition
Suppose that $a_{n}=f(n)$, where f is the function defined for $x \geq 1$.
If $\lim _{x \rightarrow \infty} f(x)=L$, then $\lim _{n \rightarrow \infty} a_{n}=L$.
\qquad Special Notes about Sequences:

- A sequence converges if $\lim _{n \rightarrow \infty} a_{n}=L$ exist. Otherwise, it diverges.

OR

$$
\lim _{n \rightarrow \infty}(-1)^{n}=\text { d.n.e }
$$

\qquad It's bouncing back \& forth from 1 to -1; and it's not approaching anything.

- A sequence is bounded if $a_{n} \leq M$ (above) \qquad never going to be above or or if $M \leq a_{n}$ (below) below a certain value.
- A monotonic sequence is always increasing $\left(a_{1}<a_{2}<a_{3}<a_{4} \ldots\right)$
or always decreasing $\left(a_{1}>a_{2}>a_{3}>a_{4} \ldots\right)$
[Examples] Determine whether the sequence converges or divergences.
(1) $\left\{\frac{n+1}{3 n-1}\right\}_{n=1}^{\infty} \quad \lim _{n \rightarrow \infty} \frac{n+1}{3 n-1} \underline{\text { nH }} \lim _{n \rightarrow \infty} \frac{1}{3}=\frac{1}{3}$; convergent.
(2) $\left\{\frac{n}{1+\sqrt{n}}\right\}_{n=1}^{\infty} \quad \lim _{n \rightarrow \infty} \frac{n}{1+\sqrt{n}} \stackrel{L^{\prime} \notin}{=} \lim _{n \rightarrow \infty} \frac{1}{\frac{1}{2} n^{-\frac{1}{2}}}=\lim _{n \rightarrow \infty} 2 \sqrt{n}=\infty$; divergent.

This was created by Keenan Xavier Lee, 2013. See my website for more information, lee-apcalculus.weebly.com.
note You may have to use the Squeeze Therese to evaluate.
Let's recall the Squeeze Theorem:
Squeeze Theorem.
If $g(x) \leq f(x) \leq h(x)$ for all $x \neq a$ in some interval about a, and

$$
\lim _{x \rightarrow a} g(x)=\lim _{x \rightarrow a} h(x)=L,
$$

then $\lim _{x \rightarrow a} f(x)=L$.
[Examples Determine we whether the sequence is convergent ordvergent.
(1) $\left\{\frac{n-3(-1)^{n}}{n+2}\right\}_{n=1}^{\infty}$
when n is odd:
$\lim _{n \rightarrow \infty} \frac{n-3}{n+2}=\lim _{n \rightarrow \infty} \frac{1}{1}=1$
when n is even

Since, $\quad \frac{n-3}{n+2} \leq \frac{n-3(-1)^{n}}{n+2} \leq \frac{n+3}{n+2}$ and $1 \leq \frac{n-3(-1)^{n}}{n+2} \leq 1$, then
$\lim _{n \rightarrow \infty} \frac{n-3(-1)^{n}}{n+2}=1$ because of the Squeeze Theorem.
(2) $\left\{\frac{(-1)^{n} n^{3}}{n^{3}+2 n^{2}+1}\right\}_{n=1}^{\infty}$
when n is odd:

$$
\lim _{n \rightarrow \infty} \frac{-n^{3}}{n^{3}+2 n^{2}+1} \text { LII } \lim _{n \rightarrow \infty} \frac{-3 n^{2}}{3 n^{2}+4 n} \text { 边 } \lim _{n \rightarrow \infty} \frac{-6 n}{6 n+4} \text { LH } \lim _{n \rightarrow \infty} \frac{-6}{6}=-1
$$

when n is even:

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} \frac{n^{3}}{n^{3}+2 n^{2}+1} \underline{\text { Lit }} \lim _{n \rightarrow \infty} \frac{3 n^{2}}{3 n^{2}+4 n} \text { L'H } \lim _{n \rightarrow \infty} \frac{6 n}{6 n+4} \text { LH } \lim _{n \rightarrow \infty} \frac{6}{6}=1 \\
& \lim _{n \rightarrow \infty} \frac{(-1) n^{3}}{n^{3}+2 n^{2}+1}=\infty \text {; divergent. }
\end{aligned}
$$

[Example] Consider $\left\{\frac{2 n-3}{3 n+4}\right\}$. Prove that an either increases or decreases.
Sidework:
$\left(\frac{1}{7}, \ldots, \frac{2}{3}\right) \rightarrow$ converges at $\frac{2}{3}$ shaw that $a_{n}<a_{n+1}$ (sequence increases)

$$
\begin{aligned}
a_{n} & <a_{n+1} \\
\frac{2 n-3}{3 n+4} & <\frac{2(n+1)-3}{3(n+1)+4} \\
\frac{2 n+3}{3 n+4} & <\frac{2 n-1}{3 n+7} \\
\Longleftrightarrow(2 n+3)(3 n+7) & <(2 n-1)(3 n+4) \\
\Longleftrightarrow 6 n^{2}+5 n-21 & <6 n^{2}+5 n-4
\end{aligned}
$$

$-21<-4$, the sequence is increasing.

Homevork page 441] 31-39

