6.2 Introduction to Series

This was created by Keenan Xavier Lee, 2013. See my website for more information, lee-apcalculus.weebly.com.
old Sequences
Consider $\left\{\frac{n+2}{n}\right\}_{n=1}^{\infty}$. Provide a graphical, analytical \& algebraic representation. Also, determine if it converges or divergences.
[ANAlYTCAL]

$$
\begin{array}{llllllllll}
\text { Domain } & 1 & 2 & 3 & 4 & 5 & 6 & \cdot & \cdot & \cdot \\
\hline \text { Range } & 3 & 2 & \frac{5}{3} & \frac{3}{2} & \frac{7}{5} & \frac{4}{3} & \cdot & \cdot & \cdot
\end{array}
$$

[GEOMETRIC]

[AlGEBRAIC]

$$
\lim _{n \rightarrow \infty} \frac{n+1}{n}=\lim _{n \rightarrow \infty} \frac{1}{1}=(1
$$

[VERBAL]
$\left\{\frac{n+1}{n}\right\}_{n=1}^{\infty}$ comerges at $y=1$.

This was created by Keenan Xavier Lee, 2013. See my website for more information, lee-apcalculus.weebly.com.
new Series
Let's consider $\left\{\frac{n}{2^{n}}\right\}_{n=1}^{\infty}$. Express the sequence.
Sequence of terms: $\frac{1}{2}, \frac{2}{4}, \frac{3}{8}, \frac{4}{16}, \frac{5}{32}, \frac{6}{64}, \frac{7}{128}, \frac{8}{256}, \ldots, \frac{2}{2^{20}}, \ldots$
Definition: An infinite series is adding of all terms for a given sequence.

$$
a_{1}+a_{2}+a_{3}+a_{4}+a_{5}+a_{6}+\cdots+a_{n}+\cdots=\sum_{n=1}^{\infty} a_{n}
$$

(Example) Using consider example, express the infinite series.

$$
\frac{1}{2}+\frac{2}{4}+\frac{3}{8}+\frac{4}{16}+\frac{5}{32}+\frac{6}{64}+\frac{7}{128}+\frac{8}{256}+\cdots+\frac{2}{2^{20}}+\cdots=\sum_{n=1}^{\infty} \frac{n}{1^{n}} .
$$

But, does it make sense to discuss about the sum of infinitely many terms? Buiemmas How do we express finite sums of series Q determine limits of series? Let's find some finite sums:
$\left.\begin{array}{l|cccccccc}n & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \cdots\end{array}\right) \cdot 20 \cdots$

Definition: A partial sum is adding finite sums.

$$
S_{n}=a_{1}+a_{2}+a_{3}+a_{4}+a_{5}+a_{6}+\cdots+a_{n}=\sum_{n=1}^{n} a_{i}
$$

Looking at the table, as n approaches ∞, the sum seems to approach 2.
condusion If the sequence of partial sums converge to a value (L), then the serves will converge to that value.
FACT $\sum_{k=1}^{\infty} a_{k}=\lim _{n \rightarrow \infty} \sum_{k=1}^{k} a_{k}$.
Basically, if $\lim _{n \rightarrow \infty} S_{n}=L$, then $\sum_{n=1}^{\infty} a_{n}=L$.
[Examples] Determine where the summation converges.
(1)

$$
\begin{aligned}
& \sum_{k=1}^{\infty} \frac{1}{k(k+1)} \\
& \sum_{k=1}^{\infty} \frac{1}{k(k+1)}=\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\cdots+\frac{1}{n(n+1)}+\cdots
\end{aligned}
$$

sequence of partial sum: $S_{1}, S_{2}, S_{3}, S_{4}, S_{5}, \ldots$

$$
\begin{aligned}
& s_{n}=\frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \frac{4}{s}, \cdots, \frac{n}{n+1}, \cdots \\
& \lim _{n \rightarrow \infty} s_{n}=\lim _{n \rightarrow \infty} \frac{n}{n+1} \frac{L+H}{} \lim _{n \rightarrow \infty} \frac{1}{1}=1 \\
& \quad \therefore \sum_{k=1}^{\infty} \frac{1}{k(k+1)}=1 .
\end{aligned}
$$

This was created by Keenan Xavier Lee, 2013. See my website for more information, lee-apcalculus.weebly.com.

$$
\begin{aligned}
& \text { (2) } \sum_{k=1}^{\infty} \frac{1}{k}-\frac{1}{k+1} \\
& \sum_{k=1}^{\infty} \frac{1}{k}-\frac{1}{k+1}=\left(1-\frac{1}{2}\right)+\left(\frac{1}{2}-\frac{1}{3}\right)+\left(\frac{1}{3}-\frac{1}{4}\right)+\cdots+\left(\frac{1}{n}-\frac{1}{n+1}\right)+\cdots \\
& S_{n}=1-\frac{1}{n+1} \\
& \lim _{n \rightarrow \infty} s_{n}=\lim _{n \rightarrow \infty} 1-\frac{1}{n+1}=\lim _{n \rightarrow \infty} 1-\lim _{n \rightarrow \infty} \frac{1}{n+1} y_{0}=1
\end{aligned}
$$

note $\sum \frac{1}{k}-\frac{1}{k+1}$ is a telescoping series - where the partial sums eventually have a fixed number of terms after the elimination.
[Geometric Series]
Let's consider a sequence where $o_{0}=3$ and the common ratio $(r)=\frac{1}{4}$.
Sequence: $3, \frac{3}{4}, \frac{3}{16}, \frac{3}{64}, \frac{3}{256}, \frac{3}{1024}, \ldots$
Partial Sum: $3, \frac{15}{4}, \frac{63}{16}, \frac{255}{64}, \frac{1023}{256}, \ldots$
(in decimal) $\quad 3,3.75,3.9375,3.984375,3.99609375, \ldots$

This was created by Keenan Xavier Lee, 2013. See my website for more information, lee-apcalculus.weebly.com.
conclusion The (geometric) series seems as though it approaches 4
But there is no proof!
Dilemma: How do we develop a "closed"formula or the equation for partial sum for geometric series (so we can find the limit)?
Definition: Geometric Series
Given $r \in \mathbb{R}$ and $a_{0} \in \mathbb{R}$, the series

$$
\sum_{n=1}^{\infty} a_{1}(r)^{n-1}=a_{1}+a_{1} r+a_{1} r^{2}+a_{1} r^{3}+a_{1} r^{4}+\cdots
$$

is called a geometric series.
The sum of the series (as always) is the limit of partial sums:

$$
\sum_{n=1}^{\infty} a_{1}(r)^{n-1}=\lim _{n \rightarrow \infty}\left(a_{1}+a_{1} r+a_{1} r^{2}+a_{1} r^{3}+\cdots+a_{1} r^{n-1}\right)
$$

We can get the "closed" formula for the $n^{\text {th }}$ partial sum as follows:
proof:

$$
\begin{aligned}
S_{n} & =a_{1}+a_{1} r+a_{1} r^{2}+a_{1} r^{3}+\cdots+a_{1} r^{n-1} \\
-r S_{n} & =-\left(a_{1} r+a_{1} r^{2}+a_{1} r^{3}+a_{1} r^{4}+\cdots+a_{1} r^{n}\right) \quad \text { (multiply } r \text { \& subtract) } \\
S_{n}-r S_{n} & =a_{1}-a_{1} r^{n} \\
S_{n}(1-r) & =a_{1}\left(1-r^{n}\right) \\
S_{n} & \left.=\frac{a_{1}\left(1-r^{n}\right)}{1-r} \quad \text { (if } r \neq 1\right)
\end{aligned}
$$

So, these are the partial suns of a geometric series (if $r \neq 1$)

$$
\begin{aligned}
S_{n} & =\sum_{n=1}^{n} a_{1}(r)^{n-1}=\frac{a_{1}\left(1-r^{n}\right)}{1-r} \\
\lim _{n \rightarrow \infty} S_{n} & =\lim _{n \rightarrow \infty} \frac{a_{1}\left(1-r^{n}\right)}{1-r}=\lim _{n \rightarrow \infty} \frac{a_{1}-a_{1} r^{n}}{1-r}=\frac{a_{1}-\lim _{n \rightarrow \infty} a r^{n}}{1-r}
\end{aligned}
$$

if $r>1$, then diverges
But if $-1<r<1$, then $\frac{a_{1}}{1-r}$.

$$
\sum_{n=0}^{\infty} a_{1}(r)^{n-1}=\frac{a_{1}}{1-r} \text { if }|r|<1 \text {. }
$$

Let recall the previous considered example to prove that it converges to 4 .

$$
\sum_{n=1}^{\infty} a_{0}(r)^{n-1}=\sum_{n=1}^{\infty}(3)\left(\frac{1}{4}\right)^{n-1}=\frac{3}{1-\frac{1}{4}}=\frac{3}{\frac{3}{4}}=(4)
$$

[Examples] Determine where the \sum converges.
(1) $\sum_{k=0}^{\infty} \frac{2^{k}}{3^{k}}$
(2)

$$
\begin{aligned}
& \sum_{n=0}^{\infty} 4\left(\frac{1}{4}\right)^{n} \\
& \sum_{k=0}^{\infty} 4\left(\frac{1}{4}\right)^{n}=\frac{4}{1-\left(\frac{1}{4}\right)}=\frac{4}{\frac{3}{4}}=4 \cdot \frac{4}{3}=\frac{16}{3} .
\end{aligned}
$$

$$
\text { (3) } \sum_{k=0}^{\infty} \frac{(-1)^{k}}{2^{k}}
$$

$$
\sum_{k=0}^{\infty} \frac{(-1)^{k}}{2^{k}}=\sum_{k=0}^{\infty}\left(\frac{-1}{2}\right)^{k}=\frac{1}{1-\left(-\frac{1}{2}\right)}=\frac{1}{\frac{3}{2}}=\frac{2}{3} .
$$

$$
\begin{aligned}
& \text { (4) } \begin{aligned}
\sum_{k=0}^{\infty} \frac{3^{k+1}-2^{k}}{5^{k}} \\
\begin{aligned}
\sum_{k=0}^{\infty} \frac{3^{k+1}-2^{k}}{5^{k}} & =\sum_{k=0}^{\infty} \frac{3^{k+1}}{5^{k}}-\sum_{k=0}^{\infty} \frac{2^{k}}{5^{k}} \\
& =\sum_{k=0}^{\infty} \frac{3^{1} 3^{k}}{5^{k}}-\sum_{k=0}^{\infty} \frac{2^{k}}{5^{k}} \\
& =\sum_{k=0}^{\infty} 3\left(\frac{3}{5}\right)^{k}-\sum_{k=0}^{\infty}\left(\frac{2}{5}\right)^{k} \\
& =\frac{3}{1-\left(\frac{3}{5}\right)}-\frac{1}{1-\left(\frac{2}{5}\right)} \\
& =\frac{3}{\frac{2}{5}}-\frac{1}{\frac{3}{5}}=\frac{35}{6}
\end{aligned}
\end{aligned} .=\begin{array}{l}
\text { (}
\end{array}
\end{aligned}
$$

(5) $\sum_{k=3}^{\infty} \frac{1}{3^{k}}$
note: index needs to start at $k=0$.

$$
\sum_{k=3}^{\infty} \frac{1}{3^{k}}=\sum_{k=0}^{\infty} \frac{1}{3^{3+k}}=\sum_{k=0}^{\infty} \frac{1}{3^{3} \cdot 3^{k}}=\sum_{k=0}^{\infty} \frac{1}{27}\left(\frac{1}{3}\right)^{k}=\frac{\frac{1}{27}}{1-\left(\frac{1}{3}\right)}
$$

$=\frac{1}{18}$
[Basic Test for Divergence] The $N^{\text {th }}$ Term Test If the sequence of terms $\left\{a_{k}\right\}_{k=1}^{\infty}$ does not converge to 0 , then the series $\sum_{k=1}^{\infty} a_{k}$ diverges.
[Examples] Convergent or Divergent.
(1) $\sum_{n=2}^{\infty} \frac{n^{2}}{n^{2}-1}$

Test for Divergence: $\lim _{n \rightarrow \infty} \frac{n^{2}}{n^{2}-1} \frac{\text { LH }}{\lim _{n \rightarrow \infty}} \frac{2 n}{2 n}=\lim _{n \rightarrow \infty} 1=1(\neq 0)$
Since $\lim _{n \rightarrow \infty} \frac{n^{2}}{n^{2}-1} \neq 0$ then $\sum_{n=2}^{8} \frac{n^{2}}{n^{2}-1}$ is divergent.
(2) $\sum_{n=1}^{\infty} \frac{n^{2}}{5 n^{2}+4}$

$$
\lim _{n \rightarrow \infty} \frac{n^{2}}{5 n^{2}+4} \frac{\text { L' }^{\prime}+1}{=} \lim _{n \rightarrow \infty} \frac{2 n}{10 n+4} \stackrel{\text { HIt }}{=} \lim _{n \rightarrow \infty} \frac{2}{20}=\frac{1}{5}(\neq 0)
$$

$\sum_{n=1}^{\infty} \frac{n^{2}}{5 n^{2}+4}$ is divergent.
WARNING If $\lim _{n \rightarrow \infty} a_{n}=0$, then we can't condude whether convergent or divergent
(3) $\sum_{k=1}^{\infty} \frac{1}{k}$
$\lim _{n \rightarrow \infty} \frac{1}{k}=0 \rightarrow$ cun't conclude on convergence or dwergence. n.

$$
\begin{aligned}
& \sum_{k=1}^{\infty} \frac{1}{k}=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\cdots \text { (The Harmonic Series) } \\
& s_{1}=1 \quad s_{2}=1+\frac{1}{2} \quad s_{4}=1+\frac{1}{2}+\left(\frac{1}{3}+\frac{1}{4}\right)>1+\frac{1}{2}+\frac{1}{4}+\frac{1}{4} \\
& \left(=1+\frac{2}{2}\right) \\
& s_{8}=1+\frac{1}{2}\left(+\frac{1}{3}+\frac{1}{4}\left(+\frac{1}{5}+\frac{1}{6}+\frac{1}{7}+\frac{1}{8}\right)>1+\frac{1}{2}\left(+\frac{1}{4}+\frac{1}{4}\left(+\frac{1}{8}+\frac{1}{8}+\frac{1}{8}+\frac{1}{8}\right)\right.\right. \\
& \\
& \left(=1+\frac{1}{2}+\frac{1}{2}+\frac{1}{2}\right) \\
& \\
& \left(=1+\frac{3}{2}\right)
\end{aligned}
$$

$$
\begin{aligned}
& S_{16}=1+\frac{1}{2}\left(+\frac{1}{3}+\frac{1}{4}\left(+\frac{1}{5}+\frac{1}{6}+\frac{1}{7}+\frac{1}{8}\right)\left(+\frac{1}{9}+\frac{1}{10}+\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+\frac{1}{14}+\frac{1}{15}+\frac{1}{16}\right)\right. \\
& >1+\frac{1}{2}\left(+\frac{1}{4}+\frac{1}{4}\right)\left(+\frac{1}{8}+\frac{1}{8}+\frac{1}{8}+\frac{1}{8}\right)+\left(\frac{1}{16}+\frac{1}{16}+\frac{1}{16}+\frac{1}{16}+\frac{1}{16}+\frac{1}{16}+\frac{1}{16}+\frac{1}{16}\right) \\
& \left(=1+\frac{1}{2}+\frac{1}{2}+\frac{1}{2}+\frac{1}{2}\right) \\
& \left(=1+\frac{4}{2}\right) \\
& S_{32}>1+\frac{5}{2} \quad S_{64}>1+\frac{6}{2}
\end{aligned}
$$

So, ... $S_{2^{n}}>1+\frac{n}{2}$

$$
\lim _{n \rightarrow \infty} 1+\frac{n}{2}=\lim _{n \rightarrow \infty} 1+\frac{1}{2} n=\infty \text {; divergent. }
$$

SuMMARY for Convergence or Divergence

1. Geometric Series:
if $|r|<1$ for $a_{1}=a(r)^{n}$, then $\sum a_{n}$ converges at $\frac{a}{1-r}$
2. $N^{\text {th }}$ Term Test

Divergence

1. Geometric Serves
if $|r|>1$ for $a_{n}=a(r)^{n}$, then $\sum a_{n}$ diverges.
2. $N^{\text {th }}$ Term Test:
if $\lim _{n \rightarrow \infty} a_{n} \neq 0$, then $\sum a_{n}$ diverges

This was created by Keenan Xavier Lee, 2013. See my website for more information, lee-apcalculus.weebly.com.

Homework
7-10, 11-19 (Radius of Convergence)
page 511] 29-30,32,34,38-41 (Geometric Series \& $\mathrm{N}^{\text {th }}$ Term Tests)

