6.2 Introduction to Series

New Series

Let's consider $\begin{cases} n & 2 \infty \\ 2^n & y_{n=1} \end{cases}$. Express the sequence. Sequence of terms: $\frac{1}{2}$, $\frac{2}{4}$, $\frac{3}{8}$, $\frac{4}{16}$, $\frac{5}{32}$, $\frac{6}{64}$, $\frac{7}{128}$, $\frac{8}{256}$, ..., $\frac{2}{2^{20}}$, ...

<u>Definition</u>: An <u>infinite series</u> is adding of all terms for a given sequence.

 $a_1 + a_2 + a_3 + a_4 + a_5 + a_6 + \dots + a_n + \dots = \sum_{n=1}^{n} a_n$

(Example) Using consider example, express the infinite series.

 $\frac{1}{2} + \frac{2}{4} + \frac{3}{8} + \frac{4}{16} + \frac{5}{32} + \frac{6}{64} + \frac{7}{128} + \frac{8}{256} + \dots + \frac{2}{2^{20}} + \dots = \sum_{n=1}^{\infty} \frac{n}{2^n}$

But, does it make sense to discuss about the sum of infinitely many terms? Dilemma How do we express finite sums of series & determine limits of series?

Let's find some finite sums:

Definition: A partial sum is odding finite sums.

 $S_n = a_1 + a_2 + a_3 + a_4 + a_5 + a_6 + \dots + a_n = \sum_{n=1}^{l} a_i$

Looking at the table, as n approaches
$$\infty$$
, the sum seens to approach 2.
(condusion) If the sequence of partial sums converge to a value (L),
then the series will converge to that value.
FACT $\sum_{k=1}^{n} a_k = \lim_{n \to \infty} \sum_{k=1}^{n} a_k$.
Basically, if $\lim_{n \to \infty} S_n = L$, then $\sum_{n=1}^{n} a_n = L$.
[Examples] Determine where the summation converges.
 $\sum_{k=1}^{n} \frac{1}{k(k+1)} = \frac{1}{2} + \frac{1}{6} + \frac{1}{12} + \frac{1}{20} + \cdots + \frac{1}{n(n+1)} + \cdots$
sequence of partial sum: $S_1, S_2, S_3, S_4, S_5, \ldots$
 $S_n = \frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \frac{4}{5}, \cdots, \frac{n}{n+1}, \cdots$
 $\lim_{n \to \infty} S_n = \lim_{n \to \infty} \frac{n}{n+1} - \frac{1}{n + \infty} = 1$.
 $\sum_{k=1}^{n} \frac{1}{k(k+1)} = 1$.

 $(2) \xrightarrow{2}_{k=1} \frac{1}{k} - \frac{1}{k+1}$ $\sum_{k=1}^{2} \frac{1}{k} - \frac{1}{k+1} = \left(1 - \frac{1}{2}\right) + \left(\frac{1}{2} - \frac{1}{3}\right) + \left(\frac{1}{3} - \frac{1}{4}\right) + \dots + \left(\frac{1}{n} - \frac{1}{n+1}\right) + \dots$ $S_{n} = 1 - \frac{1}{n+1}$ $\lim_{n \to \infty} S_n = \lim_{n \to \infty} 1 - \frac{1}{n+1} = \lim_{n \to \infty} 1 - \lim_{n \to \infty} \frac{1}{n+1} = 1.$ $[n \delta \overline{fe}] \leq \frac{1}{K} - \frac{1}{K+1}$ is a telescoping series — where the partial sums eventually have a fixed number of terms after the elimination. [Geometric Series] Let's consider a sequence where $q_0 = 3$ and the common ratio $(r) = \frac{1}{4}$ Sequence: $3, \frac{3}{4}, \frac{3}{16}, \frac{3}{64}, \frac{3}{256}, \frac{3}{1024}, \dots$ Partial Sum: 3, 15, 63, 255, 1023, ... (in decimal) 3, 3.75, 3.9375, 3.984375, 3.99609375, ...

Conclusion The (gramodric) series seems as though it approaches 4
But there is no proof!
Dilemma: How do we develop a "closed" formula or the equation for
partial sum for geometric series (so we can find the limit)?
Definition: Geometric Series
Given re IR and a₀ eIR, the series

$$\sum_{n=1}^{n} a_1(r)^{n-1} = a_1 + a_1r + a_1r^2 + a_1r^3 + a_1r^4 + \cdots$$

is called a geometric series.
The sum of the series (as always) is the limit of partial sums:
 $\sum_{n=1}^{n} a_1(r)^{n-1} = \lim_{n \to \infty} (a_1 + a_1r + a_1r^2 + a_1r^3 + \cdots + a_1r^{n-2})$
 $n \to \infty$
We can get the closed "formula for the nth partial sum as follows:
 $proof:$
 $S_n = a_1 + a_1r^2 + a_1r^3 + \cdots + a_1r^{n-1}$
 $- rS_n = -(a_1r + a_1r^2 + a_1r^3 + \cdots + a_nr^n)$ (multiply r & subtract)
 $S_n - rS_n = a_1 - a_1r^n$
 $S_n = \frac{a_1(1-r^n)}{1-r}$ (if $r \neq 1$)

So, these are the partial sums of a geometric series (if
$$r \neq 1$$
)

$$S_{n} = \sum_{n=1}^{N} a_{i}(r)^{n-1} = \underline{a_{i}(1-r^{n})}_{1-r}$$

$$\lim_{n \to \infty} S_{n} = \lim_{n \to \infty} \frac{a_{i}(1-r^{n})}{1-r} = \lim_{n \to \infty} \frac{a_{i} - a_{i}r^{n}}{1-r} = \underline{a_{i} - a_{i}r^{n}}_{1-r}$$
if $r > 1$, then diverges
But, if $-1 < r < 1$, then $\underline{a_{i}}_{1-r}$.

$$\sum_{n=0}^{N} a_{i}(r)^{n-1} = a_{i}$$

$$1-r$$
if $|r| < 1$.

Let recall the previous considered example to prove that it converges to 4.

[Examples] Determine where the S converges. $(1) \sum_{k=0}^{\infty} \frac{2^k}{3^k}$ $\frac{2^{k}}{2^{k}} = \frac{2^{k}}{2^{k}} = \frac{2}{2} \left(\frac{2}{3}\right)^{k} = \frac{1}{2^{k}} = \frac{1}{2} = \frac{1}{2} = 3$ KHO was created by Kerron Xavier Lee, 2013. See my website for more information, lee-apcale

 $\begin{array}{c} \hline \text{note:} & \text{index needs to start at } k=0. \\ \hline & \underline{1} \\ & \underline{3}^{\text{K}} \\ & \underline{4} \\ & \underline{5} \\ &$ $=\frac{1}{18}$

[Basic Test for Divergence] The Nth Term Test If the sequence of terms $\{a_k\}_{k=1}^{\infty}$ does not converge to 0, then the series $\{a_k\}_{k=1}^{\infty}$ diverges.

[Example3] Convergent or Divergent. (1) $\frac{n^2}{n^2-1}$

Test for Divergence: $\lim_{n \to \infty} \frac{n^2}{n^2-1} \xrightarrow{1 \pm 1} \lim_{n \to \infty} \frac{2n}{2n} = \lim_{n \to \infty} 1 = 1 \neq 0$

Since $\lim_{n \to \infty} \frac{n^2}{n^2 - 1} \neq 0$ then $\frac{n^2}{n^2 - 1}$ is divergent.

 $\lim_{n \to \infty} \frac{n^2}{5n^2 + 4} \xrightarrow{L' + 1}_{n \to \infty} \frac{2n}{10n + 4} \xrightarrow{L' + 1}_{n \to \infty} \frac{2}{10} = \frac{1}{5} (\neq 0)$ $\frac{n^2}{5n^2t^4}$ is divergent. WARNING) If $\lim_{n \to \infty} a_n = 0$, then we can't conclude whether convergent or divergent 3 <u>1</u> <u>k</u> $\lim_{N \to \infty} \frac{1}{K} = 0 \longrightarrow \operatorname{cun't} \operatorname{conclude} \operatorname{on} \operatorname{convergence} \operatorname{or} \operatorname{dwergence}.$ $\sum_{K=1}^{1} \frac{1}{K} = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \dots \text{ (The Harmonic Series)}$ $S_2=1+\frac{1}{2}$ $S_4=1+\frac{1}{2}+(\frac{1}{3}+\frac{1}{4}) > 1+\frac{1}{2}+\frac{1}{4}+\frac{1}{4}$ $S_{1} = 1$ $(= 1 + \frac{2}{7})$ $S_{B} = \left[+ \frac{1}{2} \left(+ \frac{1}{3} + \frac{1}{4} \right) \left(+ \frac{1}{5} + \frac{1}{5} + \frac{1}{7} + \frac{1}{8} \right) > \left[+ \frac{1}{2} \left(+ \frac{1}{4} + \frac{1}{4} \right) \left(+ \frac{1}{2} + \frac{1}{8} + \frac{1}{8} + \frac{1}{8} \right) \right]$ $(=1+\frac{1}{2}+\frac{1}{2}+\frac{1}{2})$ $(= |+\frac{3}{2})$

 $S_{16} = 1 + \frac{1}{2} \left(+ \frac{1}{3} + \frac{1}{4} \right) \left(+ \frac{1}{5} + \frac{1}{6} + \frac{1}{7} + \frac{1}{8} \right) \left(+ \frac{1}{9} + \frac{1}{10} + \frac{1}{11} + \frac{1}{12} + \frac{1}{13} + \frac{1}{14} + \frac{1}{15} + \frac{1}{16} \right)$ $> 1 + \frac{1}{2} \left(+ \frac{1}{4} + \frac{1}{4} \right) \left(+ \frac{1}{8} + \frac{1}{8} + \frac{1}{8} + \frac{1}{8} \right) + \left(\frac{1}{16} + \frac{1}{16} \right)$ $(=1+\frac{1}{2}+\frac{1}{2}+\frac{1}{2}+\frac{1}{2})$ $(= |+\frac{4}{2})$ $S_{64} > 1 + \frac{6}{2}$ $5_{32} > 1 + \frac{5}{2}$ $S_{0,...} S_{2^{n}} > 1 + \frac{n}{2}$ $\lim_{n \to \infty} \frac{1+n}{2} = \lim_{n \to \infty} \frac{1+1}{2} = \infty; \text{ divergent.}$ SUMMARY for Convergence or Divergence Divergence Convergence 1. Geometric Series: if |r| < 1 for $a_p = a(r)$, then $\leq a_n$ converges at <u>a</u> 1-r1 Geometric Serves if |r| > 1 for $a_p = a(r)''$, then 2 an diverges. 2. Nth Term Test. 2. Nth Term Test: if $\lim_{n \to \infty} a_n \neq 0$, then $\leq a_n$ diverges. This was created by Keenan Xavier Lee, 2013. See my website for more information, lee-apcalculus.weebly.com.

Homework page 481] 7-10, 11-19 (Radius of Convergence) page 511] 29-30, 32, 34, 38-41 (Germetric Series & Nth Term Tests)