6.3 The Fundamental Theorem of Calculus

Standards:

MCI1
MCIIb

Old Areas \&Distances
Let's consider the function $f(x)=x^{3}+2$. Approximate the area form $x=1$ bo $x=2$ using 3 rectangles. $\quad \Delta x=\frac{b-a}{n}=\frac{2-7}{3}=\frac{3}{3}=1$

LRAM

$$
\begin{aligned}
\text { sum } & =A_{1}+A_{2}+A_{3} \\
& =\Delta_{x}[f(-1)+f(0)+f(1)] \\
& =1[1+2+3] \\
& =6
\end{aligned}
$$

GRAM

$$
\begin{aligned}
\text { Sum } & =A_{1}+A_{2}+A_{3} \\
& =\Delta x[f(-.5)+f(.5)+f(1.5)] \\
& =1[1.875+2.125+5.375] \\
& =0.375
\end{aligned}
$$

GRAM

$$
\begin{aligned}
\text { Sum } & =A_{1}+A_{2}+A_{3} \\
& =\Delta x[f(0)+f(1)+f(2)] \\
& =1(2+3+10) \\
& =15
\end{aligned}
$$

Trapezoidal Rule Appnx

$$
\begin{aligned}
\text { Sum } & =A_{1}+A_{2}+A_{3} \\
& =\Delta x[f(-1)+2 f(0)+2 f(1)+f(2)] \\
& =1[1+2+3+10] \\
& =16
\end{aligned}
$$

Also old Integration \rightarrow Antidifferentiation

$$
\begin{aligned}
& \text { (1) } \int x^{5}+3 x^{3}+\frac{2}{x^{2}}+\pi d x=\int x^{5}+3 x^{3}+2 x^{-2}+\pi d x \\
& =\frac{x^{6}}{6}+\frac{3 x^{4}}{4}+\frac{2 x^{-1}}{-1}+\pi x+c \\
& =\frac{1}{6} x^{6}+\frac{3}{4} x^{4}-\frac{2}{x}+\pi x+c
\end{aligned}
$$

$$
\begin{aligned}
& \text { (2) } \int \frac{t^{3}+2 t^{2}}{\sqrt{t^{2}}} d t \\
& =\int \frac{t^{3}}{\sqrt{t}}+\frac{2 t^{2}}{\sqrt{t}} d t=\int \frac{t^{3}}{t^{1 / 2}}+\frac{2 t^{2}}{t^{1 / 2}} d t \\
& =\int t^{5 / 2}+2 t^{3 / 2} d t
\end{aligned}=\frac{t^{7 / 2}}{7 / 2}+\frac{2 t^{5 / 2}}{5 / 2}+C .
$$

new The FTC
Let's consider a function f cuntrumoss on $[a, b]$.

- Every contnnuws has an antideñahner $F(x)$
$F(x)=\int_{a}^{x} f(t) d t$, where x is in $[a, b]^{-}$ unnection between differentiation $\&$ integrant.
 is continuo us on $[a, b]$, differentiable on $(a, b) \& F^{\prime}(x)=f(x)$.
[Example] Find derivatives.

$$
\begin{aligned}
& \text { (1) } g(x)=\int_{1}^{x}\left(t^{2}-1\right)^{20} d t \\
& g^{\prime}(x)=\frac{d}{d x} \int_{1}^{x}\left(t^{2}-1\right)^{20} d t=\left(x^{2}-1\right)^{20}
\end{aligned}
$$

$$
\begin{aligned}
& \text { (2) } f(x)=\int_{\pi}^{x} \frac{\cos ^{2} t}{\ln (t-\sqrt{t})} d t \\
& f^{\prime}(x)=\frac{d}{d t} \int_{\pi}^{x} \frac{\cos ^{2} t}{\ln (t-\sqrt{t})} d t=\frac{\cos ^{2} x}{\ln (x-\sqrt{x})}
\end{aligned}
$$

Sometimes you might have to use the chain rule..
(3) $f(x)=\int_{\pi}^{x} \cot ^{2} t d t$

$$
f^{\prime}(x)=\frac{d}{d x} \int_{\pi}^{x} \cot ^{2} t d t=\cot ^{2} x
$$

(4)

$$
\begin{aligned}
& h(x)=\int_{\pi}^{x^{2}} \cot t^{2} t d t \\
& \begin{aligned}
h^{\prime}(x)=\frac{d}{d x} \int_{\pi}^{x^{2}} \cot ^{2} t d t & =\cot ^{2}\left(x^{2}\right) \cdot 2 x \\
& =2 x \cot ^{2}\left(x^{2}\right) .
\end{aligned}
\end{aligned}
$$

Let's insider a function f continuo us on $[c, d]$.

$$
\begin{aligned}
& \frac{1^{5 t}}{\text { part of ofT }} \\
& F(x)=\int_{c}^{x} f(t) d t \\
& F^{\prime}(x)=f(x)
\end{aligned}
$$

Let's think about what: (ass umping $b>a$)

$$
F(b)-F(a)=\int_{c}^{c} f(t) d t-\int_{c}^{a} f(t) d t=\int_{a}^{b} f(t) d t
$$

$2^{\text {nd }}$ part of FTC

$$
\left.\int_{a}^{b} f(x) d x=F(x)\right]_{a}^{b}=F(b)-F(a) \text { where } F^{\prime}=f \text {. }
$$

(so where F is the antiderivative off)
[Example] - back to old example of Area \& Distances
NOW WE ARE GOING TO COMPUTE the area.

$$
\begin{aligned}
&\left.\int_{-1}^{2}\left(x^{3}+2\right) d x=\frac{x^{4}}{4}+2 x\right]_{-1}^{2} \\
&=\left[\frac{(2)^{4}}{4}+2(2)\right]-\left[\frac{(-1)^{4}}{4}+2(-1)\right] \\
&=[8]-[-1.75) \\
&=9.75
\end{aligned}
$$

(2)

$$
\begin{aligned}
\left.\int_{0}^{2} 2-x^{2} d x=2 x-\frac{x^{3}}{3}\right]_{0}^{3} & =\left[2(2)-\frac{(2)^{3}}{3}\right]-\left[2(0)-\frac{(1)^{3}}{3}\right] \\
& =\left[4-\frac{8}{3}\right]-[0] \\
& \approx 1.333
\end{aligned}
$$

(3)

$$
\begin{aligned}
&\left.\int_{2}^{5} 2+3 x-x^{2} d x=2 x+\frac{3 x^{2}}{2}-\frac{x^{3}}{3}\right]_{2}^{5}= \\
&=\left[2(5)+\frac{3(5)^{2}}{2}-\frac{(5)^{3}}{3}\right]-\left[2(1)+\frac{3(1)^{2}}{2}-\frac{(1)^{3}}{3}\right] \\
& \approx 2.666
\end{aligned}
$$

