6.3 The Integral Test

old Improper Integrals
Let's recall the idea behind Infinite Integrals:
The idea is to find the area when one side is unbounded (or both sides are unbounded).
Infinite Integrals, where an infinity is either at one or both limits of integration $\longrightarrow_{\text {(ore case) }}$ $f f(x)$ is continuous on $[a, \infty)$, then $\int_{a}^{\infty} f(x) d x=\lim _{\rightarrow \infty} \int_{a}^{t} f(x) d x$
[Examples] Integrate.

$$
\begin{aligned}
& \text { (1) } \left.\int_{1}^{\infty} \frac{d x}{x^{3}}=\lim _{t \rightarrow \infty} \int_{1}^{t} \frac{1}{x^{3}} d x=\lim _{t \rightarrow \infty} \int_{1}^{t} x^{-3} d x=\lim _{t \rightarrow \infty} \frac{x^{-2}}{-2}\right]_{1}^{t} \\
& \left.=\lim _{t \rightarrow \infty} \frac{-1}{2 x^{2}}\right]_{1}^{t}=\lim _{t \rightarrow \infty}\left[\frac{-1}{2 t^{2}}-\frac{-1}{2(1)}\right]=\lim _{t \rightarrow \infty}\left[\frac{-\frac{1}{2 t^{2}}}{L_{0}}+\frac{1}{2}\right] \\
& =0+\frac{1}{2}=\frac{1}{2}, \text { convergent. }
\end{aligned}
$$

(2) $\left.\int_{1}^{\infty} \frac{1}{x} d x=\lim _{t \rightarrow \infty} \int_{1}^{t} \frac{1}{x} d x=\lim _{t \rightarrow \infty} \ln |x|\right]_{1}^{t}=\lim _{t \rightarrow \infty}[\ln |t|-\ln |1|]$ $=\lim _{t \rightarrow \infty}[(\ln \mid t)-0]=\infty-0=\infty$; divergent.
[new The Integral Test
Let's consider $\sum_{n=1}^{\infty} \frac{1}{n^{2}}$. Determine where the series convergences or divergences.
Recall from 6.2 - if if $\lim _{n \rightarrow \infty} a_{n} \neq 0$, then $\sum_{n \rightarrow \infty}^{\infty} a_{n}$ divergences.
But warning... if $\lim _{n \rightarrow \infty} a_{n}=0$, then we can't conclude on divergence or convergence.

Test for Divergence:

$$
\lim _{n \rightarrow \infty} \frac{1}{n^{2}} \text { 谋 } \lim _{n \rightarrow \infty} \frac{0}{2 n}=0 \text {. }
$$

Since $\lim _{n \rightarrow \infty} \frac{1}{n^{2}}=0$, then we cant conclude if $\sum_{n=1}^{\infty} \frac{1}{n^{2}}$ is dweigent or convergent.

Dilemma: After this technique, what other alternative can luce to test for divergence or convergence?
[The Integral Test]
If $a_{k}=f(k)$, where f is:

1) positive (abovex-axis)
2) continuous (no breaks in graphs in interval)
3) decreasing $\left(f^{\prime}<0\right)$
on $[1, \infty)$ then
$\sum_{k=1}^{\infty} a_{k}$ and $\int_{1}^{\infty} f(x) d x$ either both converge or diverge.

Convergence Illustration

$$
\sum_{k=2}^{\infty} a_{k}<\int_{1}^{\infty} f(x) d x
$$

(if the improper integral is finite,
then the series is finite)
\Longrightarrow convergent

Divergence Illustration

$$
\sum_{k=2}^{\infty} a_{k}>\int_{1}^{\infty} f(x) d x
$$

(infinite region)
\Rightarrow divergent
[p-series]

Suppose we have the series of the form:

$$
\sum_{k=1}^{\infty} \frac{1}{k^{p}}=1+\frac{1}{2^{p}}+\frac{1}{3^{p}}+\cdots, \text { where } p>0
$$

Case 1 when $p=1$: (The Harmonic Series)

$$
\sum_{k=2}^{\infty} \frac{1}{k}=1+\frac{1}{2}+\frac{1}{3}+\cdots
$$

Let's evaluate the improper integral to determine whether converge or diverge:

$$
\begin{aligned}
& \left.\sum_{k=1}^{8} \frac{1}{k}=\int_{1}^{\infty} \frac{1}{x} d x=\lim _{t \rightarrow \infty} \int_{1}^{t} \frac{1}{x} d x=\lim _{t \rightarrow \infty} \ln x\right]_{1}^{t}=\lim _{t \rightarrow \infty}[\ln t-\ln 1] \\
& =\lim _{t \rightarrow 0} \ln t=\infty ; \text { divergent. }
\end{aligned}
$$

So, $\sum_{k=1}^{\infty} \frac{1}{k}$ is divergent.
case 2 when $p \neq 1$:

$$
\sum_{k=1}^{\infty} \frac{1}{k^{p}}=1+\frac{1}{2^{p}}+\frac{1}{3^{p}}+\cdots, \quad \text { where } p>0
$$

Let's evaluate the improper integral to determine whether converge or diverge:

$$
\begin{aligned}
& \left.\sum_{k=1}^{\infty} \frac{1}{k^{p}}=\int_{1}^{\infty} \frac{1}{x^{p}} d x=\lim _{t \rightarrow \infty} \int_{1}^{t} \frac{1}{x^{p}} d x=\lim _{t \rightarrow \infty} \frac{x^{p+1}}{p+1}\right]_{1}^{t} \\
& =\lim _{t \rightarrow \infty} \frac{1}{p+1} t^{p+1}-1
\end{aligned}
$$

conclusion . If $p>1-\sum_{k=1}^{\infty} \frac{1}{k^{p}}$ converges

- If $p \leq 1-\sum_{k=1}^{\infty} \frac{1}{k^{p}}$ diverges

Warning We don't know what value the series converges to. (if it converges)

This was created by Keenan Xavier Lee, 2013. See my website for more information, lee-apcalculus.weebly.com.
[Example] Determine whether the series is convergent or divergent.

$$
\begin{aligned}
& \text { (1) } \sum_{k=2}^{\infty} \frac{1}{k \ln k} \\
& \left.\left.\sum_{k=2}^{\infty} \frac{1}{k \ln k}=\int_{2}^{\infty} \frac{1}{x \ln x} d x=\lim _{t \rightarrow \infty} \int_{\substack{t \\
u \\
u=\ln x \\
d u=1 \\
x}} \frac{1}{x \ln x}=\lim _{t \rightarrow \infty} \int_{2}^{t} \frac{1}{u} d u=\lim _{t \rightarrow \infty} \ln \right\rvert\, u\right]_{2}^{t} \\
& =\lim _{t \rightarrow \infty} \ln |\ln x|_{2}^{t}=\lim _{t \rightarrow \infty} \ln |\ln t|-\ln |\ln 2|=\infty ; \text { divergent. }
\end{aligned}
$$

$\sum_{k=2}^{\infty} \frac{1}{k \ln k}$ is divergent.

$$
\begin{aligned}
& \text { (2) } \sum_{k=2}^{\infty} \frac{1}{k(\ln k)^{2}} \\
& \left.\sum_{k=2}^{\infty} \frac{1}{k(\ln k)^{2}}=\int_{2}^{\infty} \frac{1}{x(\ln x)^{2}} d x=\lim _{t \rightarrow \infty} \int_{2}^{t} \frac{1}{x(\ln x)^{2}} d x=\lim _{t \rightarrow \infty} \int_{2}^{t} \frac{1}{u^{2}} d u=\lim _{t \rightarrow \infty} \frac{-1}{u}\right]_{2}^{t} \\
& d u=\frac{1}{x} d x \\
& \left.=\lim _{t \rightarrow \infty} \frac{-1}{\ln x}\right]_{2}^{t}=\lim _{t \rightarrow \infty}\left[\frac{\left(\frac{-1}{\ln x}\right.}{v_{0}}-\frac{-1}{\ln 2}\right]=\frac{1}{\ln 2} \text {; convergent }
\end{aligned}
$$

$\sum_{k=1}^{\infty} \frac{1}{k \ln k}$ is convergent.
This was created by Keenan Xavier Lee, 2013. See my website for more information, lee-apcalculus.weebly.com.
(3) $\sum_{n=1}^{8} \frac{n}{n^{2}+1}$

$$
\begin{aligned}
& \sum_{n=1}^{\infty} \frac{n}{n^{2}+1}=\int_{1}^{\infty} \frac{x}{x^{2}+1} d x=\lim _{t \rightarrow \infty} \int_{1}^{t} \frac{x}{x^{2}+1} d x=\lim _{t \rightarrow \infty} \frac{1}{2} \int_{1=x^{2}+1}^{t} \frac{1}{u} d u \\
& d u=2 x d x \\
& \frac{1}{2} d u=x d x \\
& \left.\left.=\lim _{t \rightarrow \infty} \ln |u|\right]_{1}^{t}=\lim _{t \rightarrow \infty} \ln |2 x+1|\right]_{1}^{t}=\lim _{t \rightarrow \infty} \frac{\ln |2 t+1|-\ln |3|}{\Delta \infty}=\infty \text { divergent }
\end{aligned}
$$

$\sum_{n=1}^{\infty} \frac{n}{n^{2}+1}$ is divergent.

SumMARY for Convergence or Divergence

Quick Ration)
(Section Exercise Review)

