

Old Solving Quadratics

What does it mean to solve Quadratics?

- · To determine the x-intercept (3) of the functions.
- Other names for x-intercept(s) are roots, zeros, solutio. inding X. · Zero product principle is used to solve when Quadratic w incred. (a)(b) = 0

a=0 or b=0.

(Examples) Solve the Quadratics.

(1) $16x^2 - 8x = 0$	(2) $\times^2 - 4 = 0$	3 4y ² -9=0
8x(2x-1)=0	(x-2)(x+2)=D	(2y-3)(2y+3)=0
8x=0 or 2x-1=0	x=±2.	$y = \pm \frac{3}{2}$
x=0 or $2x=1$		
$X = \frac{1}{2}$		
(4) x ² +9x+14=0	(E) $x^2 + 5x = 14$	6) 2x ² = -10x+12
(x+7)(x+2)=0	x ² +5x-14=D	$2x^2 + 10x - 12$
x=-7,-2	(x + 7)(x - 2)=D	$2(x^2+5x-6) =$
	X=-7,2.	2(x+b)(x-1)=

 $(7) 2x^2 + 11x = -9$ $2x^{2}+11x+9=0$ (2x+9)(x+4)=0x==9,-1.

 $\lambda = \frac{-3}{2}, \frac{1}{2}$

(8) 4x²+4x-3=0 (2x+3)(2x-1)=D

=0 :0 2(x+b)(x-1)=0 x=-6,1.

new-A Solving by Factoring (grouping)

(1) $4x^3 + 1bx^2 - x - 4 = 0$	4x2-1=0 or x+4	= D
$4x^{2}(x+4) - 1(x+4) = 0$	(2x+1)(2x-1)=0 ×=-	-4
$(4x^2-1)(x+4)=0$	x=-1=	

This was created by Keenan Xavier Lee - 2014. See my website for more information, lee-apcalculus weebly.com.

(2) $x^3 + 5x^2 - 4x - 20 = 0$ $(3) x^3 - 9x + 5x^2 - 45 = 0$ $x^{2}(x+5)-4(x+5)=0$ $x(x^2-9)+5(x^2-9)=0$ $(x^{2}-4)(x+5)=0$ $(x+5)(x^2-9) = 0$ (x+5)(x-3)(x+3)=0 (x-2)(x+2)(x+5)=0X=-5,3,-3. x=2,-2,-5.

This was created by Keenan Xavier Lee - 2014. See my website for more information, lee-apcalculus.weebly.com.