6.4 The Comparison Test

[Od] Convergence versus Divergence
[Examples] Determine whether the series converges or diverges.
(1) $\sum_{n=1}^{\infty} \frac{2^{n}}{3^{n}}=\sum_{n=1}^{\infty}\left(\frac{2}{3}\right)^{n}$
(Geometric Series)
$r=\frac{2}{3}<1$; converges.
(2) $\sum_{n=2}^{\infty} \frac{n^{2}}{n^{2}+1}$
($N^{\text {th }}$ Term Test)

$$
\lim _{n \rightarrow \infty} \frac{n^{2}}{n^{2}+1} \stackrel{L H}{=} \lim _{n \rightarrow \infty} \frac{2 n}{2 n}=\lim _{n \rightarrow \infty} 1 \neq 0 \text {; diverges }
$$

(3) $\sum_{n=1}^{\infty} \frac{1}{e^{n}}=\sum_{n=1}^{\infty}\left(\frac{1}{e}\right)^{n}$
$r=\frac{1}{e}<1$; converges.
(Geometric Series)

$$
\begin{aligned}
& \text { (4) } \sum_{n=1}^{\infty} \frac{1}{e^{n}} \\
& \left.\sum_{n=1}^{\infty} \frac{1}{e^{n}}=\sum_{n=1}^{\infty} e^{-n}=\int_{1}^{\infty} e^{-x} d x=\lim _{t \rightarrow \infty} \int_{1}^{t} e^{-x} d x=\lim _{t \rightarrow \infty}-e^{-x}\right]_{1}^{t} \\
& \lim _{t \rightarrow \infty}\left[-e^{-t}--e^{-1}\right]=\lim _{t \rightarrow \infty} \frac{-1}{e^{t}}+\frac{1}{e}=\frac{1}{e^{\prime}} ; \text { conver }{ }_{1} g e s .
\end{aligned}
$$

This was created by Keenan Xavier Lee, 2013. See my website for more information, lee-apcalculus.weebly.com.
(5) $\sum_{n=1}^{\infty} \frac{1}{x^{3}}$ (p-series) $p=3>1$; converges.
(6)

$$
\begin{aligned}
& \text { (6) } \sum_{n=1}^{\infty} \frac{1}{\sqrt{x}}=\sum_{n=1}^{\infty} \frac{1}{x^{\frac{1}{2}}} \quad \text { (} p \text {-series) } \\
& p=\frac{1}{2}<1 \text {; diverges }
\end{aligned}
$$

new The Comparison Test
Part I: Direct Comparison
A. If $a_{n}<b_{n}$ and $\sum b_{n}$ converges, then $\sum a_{n}$ converges.
B. If $a_{n}>b_{n}$ and $\sum b_{n}$ diverges, then $\sum a_{n}$ diverges.
[Examples] Determine whether the series converges or diverges.
(1) $\sum_{n=1}^{\infty} \frac{5}{5 n-1}$
sidework
$\xrightarrow{\text { compare with }} \sum_{n=1}^{\infty} \frac{1}{n}$ is dwergent $(p \leq 1)$

$$
\begin{aligned}
\frac{5}{5 n-1} & >\frac{5}{5 n} \\
\frac{5}{5 n-1} & >\frac{1}{n} \\
5 n & >5 n-1 \\
0 & >-1
\end{aligned}
$$

Therefore, since $\frac{5}{5 n-1}>\frac{1}{n}$ then $\sum_{n=1}^{\infty} \frac{5}{5_{n-1}}$ is divergent.
(2) $\sum_{n=1}^{\infty} \frac{1}{n^{3}+n+4}$
compare to

$$
\sum_{n=1}^{\infty} \frac{1}{n^{3}} \text { is convergent }(p>1 ; p \text {-series }) \quad \begin{aligned}
& n^{3}<n^{3}+n+4 \\
& 0<n+4
\end{aligned}
$$

Therefore, since $\frac{1}{n^{3}+n+4}<\frac{1}{n^{3}}$ and $\sum \frac{1}{n^{3}}$ is convergent, then $\sum_{n=1}^{\infty} \frac{1}{n^{3}+n+4}$ is convergent.
(3) $\sum_{n=1}^{\infty} \frac{1}{2^{n-1}}$
$\stackrel{\text { compared to }}{\Longrightarrow}$

$$
\sum_{n=1}^{\infty} \frac{1}{2^{n}}=\sum_{n=1}^{\infty}\left(\frac{1}{2}\right)^{n} \text { is convergent }\left(\begin{array}{l}
r<1 \\
\text { geometric senses) }
\end{array} \sqrt[2^{n}-1]{\sqrt{2}-1}<0\right.
$$

Therefore, since $\frac{1}{2^{n}-1}<\frac{1}{2^{n}}$ and $\sum \frac{1}{2^{n}}$ is convergent, then $\sum_{n=1}^{\infty} \frac{1}{2^{n}-1}$ is convergent.
(4) $\sum_{n=1}^{\infty} \frac{2 n^{2}+3 n}{\sqrt{5+n^{3}}}$
$\sum_{n=1}^{\infty} \frac{2}{\sqrt{n}}=\sum_{n=1}^{\infty} \frac{2}{n^{\frac{1}{2}}}$ is divergent ($p<1 ; p$-series $)$
Since $\frac{2 n^{2}+3 n}{\sqrt{5+n^{3}}}>\frac{2}{\sqrt{n}}$ and $\sum_{n=1}^{\infty} \frac{2}{\sqrt{n}}$ is divergent
then $\sum_{n=1}^{\infty} \frac{2 n^{2}+3 n}{\sqrt{5+n^{3}}}$ is divergent.
sidework:

$$
\begin{aligned}
& \frac{2 n^{2}+3 n}{\sqrt{5+n^{5}}}>\frac{2 n^{2}}{\sqrt{n^{5}}} \\
& \frac{2 n^{2}+3 n}{\sqrt{5+n^{5}}}>\frac{2 n^{2}}{n^{\frac{5}{2}}} \\
& \frac{2 n^{2}+3 n}{\sqrt{5+n^{5}}}>\frac{2}{n^{\frac{1}{2}}} \\
& \frac{2 n^{2}+3 n}{\sqrt{5+n^{5}}}>\frac{2}{\sqrt{n}}
\end{aligned}
$$

Part II: Limit Comparison
Let $\sum a_{n}$ and $\sum b_{n}$ be series with positive terms.
Then, if $\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=c$ with $c>0$, then both series converges
or both series diverges.
[Examples] Determine whether the series converges or diverges.
(1) $\sum_{n=1}^{\infty} \frac{1}{n^{2}-1}$

Try DIRECT COMPARISON:

$$
\begin{aligned}
& \begin{aligned}
& \text { sidework: } \\
& \frac{1}{n^{2}-1}>\frac{1}{n^{2}} \\
& n^{2}>n^{2}-1 \\
& 0>-1
\end{aligned} \\
x & >r^{2}
\end{aligned}
$$

* Although the inequality statement istrue, $\sum_{n=1}^{\infty} \frac{1}{n^{2}}$ converges (but $a_{n}>b_{n}$)
so cant use direct comparison.

$$
\begin{aligned}
& \Longrightarrow a_{n}=\frac{1}{n^{2}-1} ; b_{n}=\frac{1}{n^{2}} \\
& \\
& \lim _{n \rightarrow \infty} \frac{\frac{1}{n^{2}-1}}{\frac{1}{n^{2}}}=\lim _{n \rightarrow \infty} \frac{n^{2}}{n^{2}-1} \stackrel{\text { LH }}{=} \lim _{n \rightarrow \infty} \frac{2 n}{2 n}=\lim _{n \rightarrow \infty} 1=1>0 ; \\
& \quad \begin{array}{l}
\text { limit conpansm }
\end{array} \\
& \sum_{n=1} \frac{1}{n^{2}} \text { can be used. }
\end{aligned}
$$

Since $\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}>0$, and $\sum_{n=1}^{\infty} \frac{1}{n^{2}}$ converges, then by limit comparison $\sum_{n}^{\infty} \frac{1}{n^{2}-1}$ convergences.
(2) $\sum_{n=1}^{\infty} \frac{n^{3}+1}{n^{4}-5 n-5}$

Let $a_{n}=\frac{n^{3}+1}{n^{4}-5 n-5}$ and $b_{n}=\frac{n^{3}}{n^{4}}=\frac{1}{n}$
$\Rightarrow \lim _{n \rightarrow \infty} \frac{\frac{n^{3}+1}{n^{4}-5 n-5}}{\frac{1}{n}}=\lim _{n \rightarrow \infty} \frac{n\left(n^{3}+1\right)}{n^{4}-5 n-5}=\lim _{n \rightarrow \infty} \frac{n^{4}+n}{n^{4}-5 n-5}$
$\stackrel{\text { LH }}{=} \lim _{n \rightarrow \infty} \frac{4 n^{3}+1}{4 n^{3}-5} \xlongequal{\text { LH }} \lim _{n \rightarrow \infty} \frac{12 n^{2}}{12 n^{2}}=1>0$. Limit comparison can be used
$\sum_{n=1}^{2} \frac{1}{n} \operatorname{diverges}(p<1 ; p$-series $)$
Since $\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}>0$ and $\sum_{n=1}^{\infty} \frac{1}{n}$ diverges, then by limit companion $\sum_{n=1}^{\infty} \frac{n^{3}+1}{n^{4}-5 n-5}$ diverges.
(4) $\sum_{n=1}^{\infty} \frac{2}{n^{3}-4}$

Let $a_{n}=\frac{2}{n^{3}-4}$ and $b_{n}=\frac{1}{n^{3}}$

This was created by Keenan Xavier Lee, 2013. See my website for more information, lee-apcalculus.weebly.com.
$\sum_{n=1}^{\infty} \frac{1}{n^{3}}$ converges $(p>3 ; p$-series)
Since $\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}>0$ and $\sum_{n=1}^{\infty} \frac{1}{n^{3}}$ converges, then by limit comparism

$$
\sum_{n=1}^{\infty} \frac{2}{n^{3}-4} \text { converges. }
$$

SuMMARY for Convergence or Divergence

Homework page 522] 1-5 , 5-8, 10, 15 (Quickerien)' (Section Review)

