6.6 Absolute Convergence & The Ratio and Root Tests

<u> </u>

1st - decreasing?
$$\begin{cases} 2nt3 \\ 3nt4 \end{cases} = \frac{5}{7}, \frac{7}{10}, \frac{9}{13}, \dots$$

2nd - $\lim_{N\to\infty} a_N = 0$? $\lim_{N\to\infty} \frac{2nt3}{3nt4} = \lim_{N\to\infty} \frac{2}{3} = \frac{2}{3} \neq 0$.

Provided the second sec

Old \ Alternating Series Test

 $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{\ln(1+n)}$ is convergent.

(2) $\frac{2}{3}$ (-1)" $\frac{2n+3}{3n+4}$

1st - decreasing? $\begin{cases} \frac{1}{\ln(1+n)} \end{bmatrix} = \frac{1}{\ln(2)}, \frac{1}{\ln(3)}, \frac{1}{\ln(4)}, \dots$

 $2^{nd} - \lim_{N \to \infty} a_N = 0? \lim_{N \to \infty} \frac{1}{\ln(1+n)} \lim_{N \to \infty} \frac{0}{1+n} = 0.$

 $\bigcirc \sum_{n=0}^{\infty} \frac{(-1)^{n-1}}{\ln(1+n)}$

3. Divergent
3. Divergent Both \leq , $ a_n $ and \leq , a_n diverge.
[Examples] Determine whether series absolutely converges, conditionally converges & diverges.
converges & alverges.
≤ an converges or diverges?
$\left \frac{(-1)^{n-1}}{n^2}\right = \left \frac{1}{n^2}\right (p-series)$
P>1
Since \leq , $ a_n $ converges, \leq , $ \frac{(-1)^{n-1}}{n^2} $ absolutely converges.
This was created by Keenan Xavier Lee, 2013. See my website for more information, lee-apcalculus.weebly.com.

new-A) Absolute Convergence, Conditioning Convergence, & Divergence.

Suppose 2, and diverges, but 2 an converges.

The positive terms diverge but the alternating series converges.

1. Absolutely Convergent
Suppose & |a_n| converges.

Ly Every absolutely convergent series converges (always).
That is, if & |a_n| converges, then & a_n converges.

<u>Definitions</u>: Consider \leq an.

2. Conditionally Convergent

$$2 \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n}$$

$$1st - \sum_{n=1}^{\infty} a_n$$
 converges or diverges? $2nd - \sum_{n=1}^{\infty} a_n$ converges or diverges? $2 \frac{(-1)^{n-1}}{n} = \sum_{n=1}^{\infty} \frac{1}{n}$ (p-series) $2 \frac{(-1)^{n-1}}{n}$ (alternating series test)
$$2 \frac{1}{n}$$
 decreasing? $2 \frac{1}{n} = 2 \frac{1}{n}$ (im) $2 \frac{1}{n} = 0$? $2 \frac{1}$

3) $\frac{8}{n-1}$ (-1) $\frac{n}{n+5}$ 1st $-\frac{8}{2}$ an converges or diverges? $2^{nd} - \frac{8}{2}$ an converges or diverges? $\frac{1}{n+5}$ $\frac{1}{n+5}$ $\frac{1}{n+5}$ $\frac{1}{n+5}$ ($\frac{1}{n+5}$ (alternating series test) $\frac{1}{n+5}$ $\frac{1}{n+5}$ $\frac{1}{n+5}$ $\frac{1}{n+5}$ $\frac{1}{n+5}$ decreasing? $\frac{1}{n+5}$ $\frac{2}{n+5}$ $\frac{3}{n+5}$ $\frac{1}{n+5}$ diverges.

(ii) $\frac{1}{n+5}$ $\frac{1}{n+5}$ diverges.

Thus, $\frac{8}{n+5}$ diverges.

This was created by Keenan Xavier Lee, 2013. See my website for more information, lee-apcalculus.weebly.com.

2. If $\lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| = L > 1$ (or equal ∞), then $\leq a_n$ is divergent. note: If $\lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| = L=1$, then can't say anything. [Examples] Converges or Diverges? 1 2 (-1) n $= \lim_{n \to \infty} \frac{n+1}{8} \cdot \frac{1}{n} = \lim_{n \to \infty} \frac{1}{8} \cdot \frac{n+1}{n} = \frac{1}{8} \lim_{n \to \infty} \frac{n+1}{n}$ 2 lin 1 = 1 < 1 ; (absolutely) convergent. en converges (absolutely) This was created by Keenan Xavier Lee, 2013. See my website for more information, lee-apcalculus.weebly.com.

1. If $\lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| = L < 1$, then $\lesssim a_n$ is convergent (also absolutely convergent)

New-B The Ratio Test

Consider \leq an

$$\begin{array}{c|c}
3 & \stackrel{n^2}{Z_1} & \stackrel{n^2}{Z_1} \\
\hline
 & |lm| & |\frac{(n+l)^2}{2^{n+1}} & | = |lm| & |\frac{(n+l)^2}{n^2} & |\frac{2^n}{n^2} & |lm| & |\frac{(n+l)^2}{n^2} & |\frac{1}{n^2} &$$

 $2 \frac{3}{3}$

= $\lim_{n \to \infty} 3 \cdot (1)^3 = 3 > 1$; divergent:

3n diverges

The Root Test

Consider
$$\leq a_n$$
.

1. If $\lim_{n\to\infty} \sqrt[n]{a_n} = L < 1$, then $\leq a_n$ is convergent (also absolutely convergent)

2. If $\lim_{n\to\infty} \sqrt[n]{a_n} = L > 1$ (or equal ∞), then $\leq a_n$ is divergent.

Note: If $\lim_{n\to\infty} \sqrt[n]{a_n} = L = 1$, then can't say anything.

[Examples] Converges or Diverges.

2. If $\lim_{n\to\infty} \sqrt[n]{a_n} = \lim_{n\to\infty} \frac{1}{\ln n}$ then $\lim_{n\to\infty} \frac{1}{\ln n} = 0 < 1$. Convergent (absolutely).

2. If $\lim_{n\to\infty} \sqrt[n]{a_n} = \lim_{n\to\infty} \frac{1}{\ln n}$ then $\lim_{n\to\infty} \frac{1}{\ln n} = 0 < 1$. Convergent (absolutely).

2. If $\lim_{n\to\infty} \sqrt[n]{a_n} = \lim_{n\to\infty} \frac{1}{\ln n}$ then $\lim_{n\to\infty} \frac{1}{\ln n} = 0 < 1$. Convergent (absolutely).

2. If $\lim_{n\to\infty} \sqrt[n]{a_n} = \lim_{n\to\infty} \frac{1}{\ln n}$ then $\lim_{n\to\infty} \frac{1}{\ln n} = 1$ then $\lim_{n\to\infty} \frac{1}{\ln n} = 1$ then $\lim_{n\to\infty} \frac{1}{\ln n} = 1$ then $\lim_{n\to\infty} \sqrt[n]{a_n} = 1$ then $\lim_{n\to\infty} \sqrt$

$$3 \underset{n=1}{\overset{n^n}{>}} \frac{n^n}{3^{2+3n}}$$

=
$$\lim_{n\to\infty} \frac{1}{9} \cdot \frac{n}{3^{\frac{1}{2}}} = \lim_{n\to\infty} \frac{1}{9} \cdot \frac{n}{1} = \lim_{n\to\infty} \frac{1}{9} \cdot n = \infty$$
; direigent.

n=1 31+3n diverges.