OLd Transformations of Quadratics
(1) $f(x)=-3(x-2)^{2}$
(2) $f(x)=\frac{1}{2}(x+1)^{2}+3$

Shift right 2, stretch, \sim
Shift left 1, up 3, shrink \uparrow

Hew Characteristics of Polynomials

- Domain : the set of x-values (how far left to right the graph spans)
- Range: the set of y-values (how far down to up the graph spans)
- zeros: the x-interceptls) of the graph (also called roots or solutions)
- y-intercept: the point where the graph crosses the y-axis
- Extrema: the maximum or minimum point, $\leftarrow^{\text {maximum }} V_{\leftarrow}$ minimum
- Interval of Increase: the set of x-values where the slopes are positive. \mathcal{I}
- Interval of Decrease: the set of x-values where the slopes are negative \uparrow
- Absolute Extrema: the highest or lowest point of the graph $\sim \downarrow$

This was created by Keenan Xavier Lee - 2014. See my website for more information, lee-apcalculus.weebly.com.

End Behavior
Even Degree Pllynomirds have end beharior like $\uparrow \uparrow$ or $\downarrow \downarrow$.
\rightarrow If the leading coefficient is positive, the end behwoir is $\uparrow \lambda$
\rightarrow If the leading coefficient is negative, the endbehowior is $\downarrow \downarrow$

Odd Degree Polynomial have end behavior like $\downarrow \uparrow$ or $\uparrow \downarrow$
\rightarrow If the leading coefficient is positive, the end behavior is L^{λ}
\rightarrow If the leading coefficient is negative, the end behowir is $\uparrow \downarrow$

