6.7 Power Series

Old Geometric Servies Let's recall the formula for convergence involving geometric services: $\sum_{n=0}^{\infty} \alpha_{1}(r)^{n-1} = \alpha_{1} + \alpha_{1}r + \alpha_{1}r^{2} + \alpha_{1}r^{3} + \alpha_{1}r^{4} + \cdots$ $= \frac{a_1}{1-r} \quad \text{if } |r| < 1.$ [Examples] $(\underline{A}) = \underbrace{\sum_{k=0}^{\infty} \frac{2^k}{3^k}}_{k \to 0}$ $\sum_{k=0}^{p} \frac{2^{k}}{3^{k}} = \sum_{k=0}^{p} \left(\frac{2}{3}\right)^{k} = \frac{1}{1 - \left(\frac{2}{3}\right)} = \frac{1}{\frac{1}{3}} = 3$ ⁽²⁾ $\sum_{h=0}^{2} 4(\frac{1}{4})^{n}$ $\sum_{k=0}^{\infty} 4\left(\frac{1}{4}\right)^{n} = \frac{4}{1-\left(\frac{1}{4}\right)} = \frac{4}{\frac{3}{1}} = \frac{4}{\frac{3}{1}} = \frac{16}{3}$

[New] Power Series
Let's recall the geometric series:
$$\sum_{n=0}^{\infty} x^n = 1 + x + x^2 + x^3 + \cdots$$

• series converges: $|x| < 1$ • series diverges. otherwise
Definition] Power Series
Let's consider the function $f(x)$.
 $f(x) = \sum_{k=0}^{\infty} x^k = 1 + x + x^2 + x^3 + \cdots$
 $= \frac{1}{1-x}$ (closed form); $|x| < 1$.
Goal) To manipulate the power series function to be able to use
the formula to determine the closed form and interval of convergence.
Examples] Find the closed formula & interval of convergence for each power series.
 $\bigoplus_{k=0}^{\infty} (-1)^k x^k$
 $= \frac{1}{1-(-1x)} \underbrace{1}_{1+x}$
 $\begin{bmatrix} -x \\ -1 < x < 1 \end{bmatrix}$

[Radius of Convergence]
General Definition of Power Series
A powerseries is a series of the form — centered at x=0

$$\stackrel{\infty}{=}, c_n x^n = c_0 + c_1 x + c_2 x^2 + c_3 x^3 + \cdots$$
, where c_n is the coefficents
A powerseries is a series of the form — centered at x=a
 $\stackrel{\infty}{=}, c_n (x-a)^n = c_0 + c_1 (x-a) + c_2 (x-a)^2 + \cdots$, where a fill.
(Recall that a power series may converge for some values of x and diverge for other
values of x.)
Theorem
For any given power series $\stackrel{\infty}{=}, c_n (x-a)^n$, there are only three possibilities:
1. The series converges only when x=a.
2. The series converge for all x.
3. There is a positive number R such that the series converges if $|x-a| < R$
and diverges if $|x-a| > R$.
(note) The number R represents the Radius of Convergence of the power series.
By convention, the radius of convergence is $R=0$ [for case 1] and
 $R=\infty$ [for case 2].

What about case 3?

Let's recall that the radius of convergence for power series is

series converges when x = 0;

interval of convergence Eog radius of convergence R=1

 $2 \sum_{n=1}^{\infty} \frac{(x-3)^n}{n}$ (ratio test) $\lim_{\substack{(n+1)\\n\to\infty}} \frac{(x-3)^{n+1}}{(n+1)} = \lim_{\substack{(n+1)\\n\to\infty}} \frac{(x-3)^{n}}{(n+1)} = \frac{1}{(n+1)} \frac{(x-3)^{n}}{(x-3)^{n}} = \lim_{\substack{(n+1)\\n\to\infty}} \frac{(n-1)}{(n+1)} \frac{(x-3)^{n}}{(x-3)^{n}}$ = X-3 <1 Radius of Convergence |X-3| < 1 Interval of Convergence |x-3|<1 -| < x-3 < 1 Radius of Convergence: 1 24× 4 Check endpts for convergence: $\underbrace{\overset{(x=2)}{\overset{(x=3)^n}{\overset{(x=3}^n}{\overset{(x=3)^n}{\overset{(x=3)^n}{\overset{(x=3}^n}{\overset{(x=3)^n}{\overset{(x=3}^n}{\overset{(x=3)^n}{\overset{(x=3}^n}{\overset{(x=3)^n}{\overset{(x=3}^n}{\overset{(x=3}^n}{\overset{(x=3)^n}{\overset{(x=3}^n}{\overset{(x=3}^n}{\overset{(x=3)^n}{\overset{(x=3}^n}{\overset{(x=3}^n}{\overset{(x=3)^n}{\overset{(x=3}^n}{\overset{(x=3)^n}{\overset{(x=3}^n}{\overset{(x=3}^n}{\overset{(x=3)^n}{\overset{(x=3}^n}{\overset{(x=3)^n}{\overset{(x=3}^n}{\overset{(x=3}^n}{\overset{(x=3)^n}{\overset{(x=3}^n}{\overset{(x=3}^n}{\overset{(x=3}^n}{\overset{(x=3}^n}{\overset{(x=3}^n$ 1) decreasing V 2) $\lim_{n \to \infty} \frac{1}{n} = 0$.: Convergent $\frac{x=4}{2(x-3)^{n}} = 2 \frac{(4-3)^{n}}{n} = 2 \frac{1}{n} (p-series) p=1$ \therefore dwergent. $2 \le x \le 4$ (12.4)

