6.7 Power Series

Old Geometric Series
Let's recall the formula for convergence involving geometric series:

$$
\begin{aligned}
\sum_{n=0}^{8} a_{1}(r)^{n-1} & =a_{1}+a_{1} r+a_{1} r^{2}+a_{1} r^{3}+a_{1} r^{4}+\cdots \\
& =\frac{a_{1}}{1-r} \text { if }|r|<1
\end{aligned}
$$

[Examples]
(1) $\sum_{k=0}^{\infty} \frac{2^{k}}{3^{k}}$

$$
\sum_{k=0}^{\infty} \frac{2^{k}}{3^{k}}=\sum_{k=0}^{\infty}\left(\frac{2}{3}\right)^{k}=\frac{1}{1-\left(\frac{2}{3}\right)}=\frac{1}{\frac{1}{3}}=3 .
$$

(2)

$$
\begin{aligned}
& \sum_{n=0}^{\infty} 4\left(\frac{1}{4}\right)^{n} \\
& \sum_{k=0}^{\infty} 4\left(\frac{1}{4}\right)^{n}=\frac{4}{1-\left(\frac{1}{4}\right)}=\frac{4}{\frac{3}{4}}=4 \cdot \frac{4}{3}=\left(\frac{16}{3} .\right.
\end{aligned}
$$

$$
\begin{aligned}
& \text { (3) } \sum_{k=0}^{\infty} \frac{3^{k+1}-2^{k}}{5^{k}} \\
& \sum_{k=0}^{\infty} \frac{3^{k+1}-2^{k}}{5^{k}}=\sum_{k=0}^{\infty} \frac{3^{k+1}}{5^{k}}-\sum_{k=0}^{\infty} \frac{2^{k}}{5^{k}} \\
& =\sum_{k=0}^{\infty} \frac{3^{1} 3^{k}}{5^{k}}-\sum_{k=0}^{\infty} \frac{2^{k}}{5^{k}} \\
& =\sum_{k=0}^{\infty} 3\left(\frac{3}{5}\right)^{k}-\sum_{k=0}^{\infty}\left(\frac{2}{5}\right)^{k} \\
& =\frac{3}{1-\left(\frac{3}{5}\right)}-\frac{1}{1-\left(\frac{2}{5}\right)} \\
& =\frac{3}{\frac{2}{5}}-\frac{1}{\frac{3}{5}}=\frac{35}{6}
\end{aligned}
$$

new Power Series
Let's recall the geometric serves: $\sum_{n=0}^{\infty} x^{n}=1+x+x^{2}+x^{3}+\cdots$

- series converges: $|x|<1 \quad$ - series diverges. otherwise

Definition Power Series
Let's consider the function $f(x)$.

$$
\begin{aligned}
f(x) & =\sum_{k=0}^{\infty} x^{k}=1+x+x^{2}+x^{3}+\cdots \\
& =\frac{1}{1-x}(\text { closed form }) ;|x|<1 .
\end{aligned}
$$

Goal) To manipulate the power series function to be able to use the formula to determine the closed form and interval of convergence.
[Examples] Find the closed formula \& interval of convergence for each power series.

$$
\begin{aligned}
& \text { (1) } \sum_{n=0}^{8}(-1)^{k} x^{k} \\
& \sum \sum^{(-1)^{k} x^{k}=1-x+x^{2}-x^{3}+\cdots} \\
& \left.=\sum(-\mid x)^{k}=\frac{1}{1-(-1 x)}=\frac{1}{1+x}\right) \\
& |-x|<1 \\
& |-1||x|<1 \\
& \frac{-1<x<1}{}
\end{aligned}
$$

$$
\begin{aligned}
& \text { (2) } \sum_{n=0}^{8} 2^{n} x^{n+2} \\
& =\sum^{=} 2^{n} x^{n} x^{2}=x^{2} \sum(2 x)^{n}=\frac{x^{2}}{1-(2 x)} \\
& \Rightarrow|2 x|<1 \\
& \quad|x|<\frac{1}{2} \\
& \quad \frac{-1}{2}<x<\frac{1}{2}
\end{aligned}
$$

$$
\text { (3) } \begin{aligned}
& \sum_{n=0}^{\infty}(-1)^{k} x^{2 k} \\
= & \sum(-1)^{k}\left(x^{2}\right)^{k}=\sum\left(-\mid x^{2}\right)^{k}=\frac{1}{1-\left(-x^{2}\right)}=\frac{1}{1+x^{2}} \\
\Rightarrow & \left|-x^{2}\right|<1 \\
& |x|<1 \\
& -1<x<1 .
\end{aligned}
$$

$$
\begin{aligned}
& \text { (4) } \sum_{k=0}^{8} \frac{x^{2 k+1}}{3^{k}} \\
& =\sum \frac{x^{2 k} x^{\prime}}{3^{k}}=x \sum \frac{\left(x^{2}\right)^{k}}{3^{k}}=x \sum\left(\frac{x^{2}}{3}\right)^{k}=\frac{x}{1-\left(\frac{x^{2}}{3}\right)} \\
& \Rightarrow\left|\frac{x^{2}}{3}\right|<1 \\
& \begin{array}{l}
|x|^{2}<3 \\
|x|<\sqrt{3}
\end{array} \\
& -\sqrt{3}<x<\sqrt{3}
\end{aligned}
$$

[Radius of Convergence]
General Definition of Power Series
A power series is a series of the form - centered at $x=0$ $\sum_{n=0}^{\infty} c_{n} x^{n}=c_{0}+c_{1} x+c_{2} x^{2}+c_{3} x^{3}+\cdots$, where c_{n} is the coefficients

A power series is a series of the form - centered at $x=a$

$$
\sum_{n=0}^{\infty} c_{n}(x-a)^{n}=c_{0}+c_{1}(x-a)+c_{2}(x-a)^{2}+\cdots \text {, where } a \in \mathbb{R}
$$

(Recall that a power series may converge for some values of x and diverge for other values of x)

Theorem
For any given power series $\sum_{n=0}^{a} c_{n}(x-a)^{n}$, there are only three possibilities:

1. The series converges only when $x=a$.
2. The series converge for all x.
3. There is a positive number R such that the series converges if $|x-a|<R$ and diverges if $|x-a|>R$.
note The number R represents the Radius of Convergence of the power series. By convention, the radius of convergence is $R=0$ [for case 1] and $R=\infty$ [for case 2].

What about case 3?
Let's recall that the radius of convergence for power series is

$$
\begin{aligned}
& |x-a|<R \\
\Rightarrow & -R<x-a<R \\
\Rightarrow & a-R<x<a+R
\end{aligned}
$$

note:. Using convergence test like root \& rato tests can help.
[Examples] Find the interval \& radius of convergence.
(1) $\sum_{n=0}^{8} n^{1} \cdot x^{n} \quad$ (rabi obtest)

$$
\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=\lim _{n \rightarrow \infty}\left|\frac{(n+1)!x^{n+1}}{n!x^{n}}\right|=\lim _{n \rightarrow \infty}\left|\frac{(n+1)!}{n!} \frac{x^{n+1}}{x^{n}}\right|=\lim _{n \rightarrow \infty}(n+1)|x|=\infty
$$

Series converges when $x=0$;
interval of convergence $\{0\}$
radius of convergence $R=1$.
(2) $\sum_{n=1}^{\infty} \frac{(x-3)^{n}}{n} \quad$ (ratio test)

$$
\left.\begin{aligned}
& \left.\lim _{n \rightarrow \infty}\left|\frac{\mid(x-3)^{n+1}}{\frac{(n+1)}{(x-3)^{n}}} n\right|=\lim _{n \rightarrow \infty} \right\rvert\, \frac{(x-3)^{n+1}}{(n+1)}
\end{aligned} \cdot \frac{n}{(x-3)^{n}}\left|=\lim _{n \rightarrow \infty}\left(\frac{n}{n+1}\right)\right| x-3 \right\rvert\,
$$

Radius of Convergence

$$
|x-3|<1
$$

Radius of Convergence: 1

Interval of Convergence

$$
\begin{aligned}
& |x-3|<1 \\
& <x-3<1 \\
& 2<x \quad 4
\end{aligned}
$$

Cheder endpts for convergence:

$$
\begin{aligned}
& \frac{x=2}{\sum \frac{(x-3)^{n}}{n}}=\sum \frac{(2-3)^{n}}{n}=\sum \frac{(-1)^{n}}{n}\left(\begin{array}{c}
\text { Alternating Series } \\
\text { Test })
\end{array}\right. \\
& \text { 1) decreasing }
\end{aligned}
$$

2) $\lim _{n \rightarrow \infty} \frac{1}{n}=0$
\therefore Convergent

$$
\sum \frac{x=4}{\sum \frac{(x-3)^{n}}{n}}=\sum \frac{(4-3)^{n}}{n}=\sum \frac{1}{n}(p-\text { sen es }) p=2
$$

\therefore divergent.

$$
\begin{gathered}
2 \leq x<4 \\
(2,4)]
\end{gathered}
$$

(2) $\sum_{n=0}^{\infty} \frac{n(x+2)^{n}}{3^{n+1}} \quad$ (Ratio Test)

$$
\lim _{n \rightarrow \infty}\left|\frac{\frac{(n+1)(x+2)^{n+1}}{3^{n+2}}}{\left\lvert\, \frac{n(x+2)^{n}}{3^{n+1}}\right.}\right|=\lim _{n \rightarrow \infty} \frac{(n+1)(x+2)}{\left.3^{n+2}\right)^{n+1}} \frac{3^{n+2}}{n(3)}=\lim _{n \rightarrow \infty} \frac{(n+1)}{n} \cdot \frac{|x+2|}{3}
$$

$=\frac{|x+2|}{3}<1$ Radius of Convergence
Interval of Convergence

$$
\begin{aligned}
& \frac{|x+2|}{3}<1 \\
& |x+2|<3
\end{aligned}
$$

$$
|x+2|<3
$$

$$
-3<x+2<3
$$

$$
-5<x<1
$$

Radius of Convergence $=3$
check endpoints.

$$
\begin{aligned}
& \text { ChecK endpoints: }_{\sum_{n=-5} \frac{n(-5+2)^{n}}{3^{n+1}}=\sum_{n=0}^{\infty} \frac{n(-3)^{n}}{3^{n+1}}=\sum_{n=0}^{\infty} \frac{n(-3)^{n}}{3^{1} 3^{n}}=\frac{1}{3} \sum^{n}\left(\frac{-3}{3}\right)^{n}=\frac{1}{3} \sum^{n(-1)^{n}}}^{=\infty \text {; divergent. }} \text {. }
\end{aligned}
$$

$x=1$

$$
\sum_{n=0}^{1} \frac{n(1+2)^{n}}{3^{n+1}}=\frac{1}{3} \sum n=\infty \text {; divergent. }
$$

