6.8 Representations of Functions as Power Series

old Power Series
[Examples] Find the radius \&interval of convergence.
(1) $\sum_{n=1}^{\infty} \frac{x^{n}}{n!} \quad$ (Ratio Test)
$\left.\Rightarrow \lim _{n \rightarrow \infty} \frac{\frac{x^{n+1}}{(n+1)!}}{\frac{x^{n}}{n!}}\left|=\lim _{n \rightarrow \infty}\right| \frac{x^{n+1}}{(n+1)!} \cdot \frac{n!}{x^{n}}\left|=\lim _{n \rightarrow \infty} \frac{1}{n+1} \cdot\right| x|=0 \cdot| x \right\rvert\,=0<1$
Radius of Convergence: \mathbb{R}
Interval of Convergence: $(-\infty, \infty)$

$$
\begin{aligned}
& \text { (2) } \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n} x^{n} \text { (Ratio Test) } \\
& \left.\Longrightarrow \lim _{n \rightarrow \infty} \frac{\frac{(-1)(n+1)-1}{(n+1)} x^{n}}{\frac{(-1)^{n-1}}{n} x^{n}}\left|=\lim _{n \rightarrow \infty}\right| \frac{x^{n+1}}{(n+1)} \cdot \frac{n}{x^{n}}\left|=\lim _{n \rightarrow \infty}\left(\frac{n}{n+1}\right) \cdot\right| x|=1 \cdot| x \right\rvert\,<1
\end{aligned}
$$

Interval of Convergence $|x|<1$

$$
-1<x<1
$$

Check endots:

$$
\sum(x=-1) \sum \frac{(-1)^{n-1}(-1)^{n}}{n}=\sum \frac{-1}{n} \therefore \text { divergent }
$$

$x=1) \sum \frac{(-1)^{n-1}}{n}$ (Alternating scies Test) convergent (curcitionally)

$$
\text { So, }-1<x \leq 1 \text { or }(-1,1] \text {. }
$$

Radius of Convergence

$$
|x|<1
$$

R of Convergence: 1
new Representations of Functions using Power Series
Let's consider the function $f(x)$.

$$
\begin{aligned}
f(x) & =\sum_{k=0}^{\infty} x^{k}=1+x+x^{2}+x^{3}+\cdots \\
& =\frac{1}{1-x}(\text { closed form }) ;|x|<1
\end{aligned}
$$

Goal To manipulate the closed form to create the power series function.
[Examples] Find the power serves function.

$$
\begin{aligned}
& \text { (1) } \frac{1}{1+x^{2}} \\
& \frac{1}{1+x^{2}}=\frac{1}{1-\left(-x^{2}\right)}=\sum_{n=0}^{\infty}\left(-x^{2}\right)^{n}=\sum_{n=0}^{\infty}\left(-1 x^{2}\right)^{n}=\sum_{n=0}^{\infty}(-1)^{n}\left(x^{2}\right)^{n}
\end{aligned}
$$

(2) $\frac{1}{2+x}$

$$
\begin{aligned}
& \frac{1}{2+x}=\frac{1}{2\left(1+\frac{x}{2}\right)}=\frac{1}{2\left[1-\left(-\frac{x}{2}\right)\right]}=\frac{1}{2} \cdot \frac{1}{1-\left(-\frac{x}{2}\right)}=\frac{1}{2} \sum_{n=0}^{\infty}\left(-\frac{x}{2}\right)^{n}=\frac{1}{2} \sum_{n=0}^{\infty}\left(\frac{-1 x}{2}\right)^{n} \\
& =\frac{1}{2} \sum_{n=0}^{\infty} \sum^{(-1)^{n}}\left(\frac{x}{2}\right)^{n}=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{2^{n} \cdot 2} x^{n}=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{2^{n+1}} x^{n} .
\end{aligned}
$$

$$
\begin{aligned}
& \text { (3) } \frac{x^{3}}{x+2} \\
& \frac{x^{3}}{x-4}=\frac{x^{3}}{4-x}=x^{3} \cdot \frac{1}{4\left(1-\frac{x}{4}\right)}=\frac{x^{3}}{4\left(1-\frac{x}{4}\right)}=\frac{x^{3}}{4} \cdot \frac{1}{\left(1-\frac{x}{4}\right)}=\frac{x^{3}}{4} \sum_{n=0}^{\infty}\left(\frac{x}{4}\right)^{n} \\
& =\sum_{n=0}^{\infty} \frac{x^{3}}{4}\left(\frac{x}{4}\right)^{n}=\sum_{n=0}^{\infty} \frac{x^{3} \cdot x^{n}}{4 \cdot 4^{n}}=\sum_{n=0}^{\infty} \frac{x^{3+n}}{4^{n+1}}
\end{aligned}
$$

[Differentiation \& Integration in Power Series]
Let's consider the sum of the series: $\frac{1}{1-x}$.

$$
\Longrightarrow \frac{1}{1-x}=\sum_{n=0}^{\infty} x^{n} \text { for }|x|<1
$$

Differentiate the series:
LHS: $\frac{d}{d x}\left[\frac{1}{1-x}\right]=\frac{(1-x)(0)-(1)(1)}{(1-x)^{2}}=\frac{1}{(1-x)^{2}}$
Find the power series using the differentiated sum of series:

$$
\frac{1}{(1-x)^{2}}=1+2 x+3 x^{2}+\cdots=\sum_{n=0}^{\infty} n x^{n-1}
$$

Now let's integrate of the considered function:

$$
\text { LAS: } \int \frac{1}{1-x} d x=-\int \frac{1}{u} d u=-\ln |u|+c=-\ln (1-x)
$$

Find the power series using the integrated sum of series:

$$
-\ln (1-x)=c+x+\frac{x^{2}}{2}+\frac{x^{3}}{3}+\cdots=\sum_{n=0}^{\infty} \frac{x^{n+1}}{n+1}+c
$$

Theorem
Let $f(x)=\sum c_{k}\left(x-x_{0}\right)^{k}$ be a power series with a nonzero radius of convergence. Then,

- $f^{\prime}(x)=\sum c_{k} K\left(x-x_{0}\right)^{k-1}$ for $\left|x-x_{0}\right|<R$
- $\int f(x) d x=\sum \frac{c_{k}}{k+1}\left(x-x_{0}\right)^{k+1}+C$ for $\left|x-x_{0}\right|<R$.
note:- The radius of convergence remains the same when power series is differentiated or integrated. However, the interval of convergence may not remain the same.
[Examples] Find the power series representations.
(1) $f(x)=\tan ^{-1} x$
note: $\frac{d}{d x} \tan ^{-1} x=\frac{1}{1+x^{2}} d x$

$$
\begin{aligned}
\tan ^{-1} x=\int \frac{1}{1+x^{2}} d x & =\int \frac{1}{1-\left(-x^{2}\right)} d x=\int\left(1-x^{2}+x^{4}-x^{6}+\cdots\right) d x \\
& =C+x-\frac{x^{3}}{3}+\frac{x^{5}}{5}-\frac{x^{7}}{7}+\cdots \\
& =C+\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n+1}}{2 n+1}
\end{aligned}
$$

Alternative way using theorem:

$$
\tan ^{-1} x=\int \sum_{n=0}^{\infty}\left(-x^{2}\right)^{n} d x=\int \sum(-1)^{n}(x)^{2 n} d x=\sum(-1)^{n} \frac{(x)^{2 n+1}}{2 n+1}+c .
$$

(2) $f(x)=\ddot{\ln }(1+x)$
note: $\frac{d}{d x} \ln (1+x)=\frac{1}{1+x}$

$$
\ln (1+x)=\int \frac{1}{1+x} d x=\int \frac{1}{1-(-x)} d x=\int \sum(-x)^{n} d x=\sum(-1)^{n} \frac{x^{n+1}}{n+1}+c
$$

This was created by Keenan Xavier Lee, 2013. See my website for more information, lee-apcalculus.weebly.com.

