6.9 Taylor Series \& Naclaurin Series

ORd] \rightarrow we were able to find power series for a certain restricted class of functions.
now \rightarrow we are finding functions for powerseries for move general problems.
[Maclaurin Series] Taylor Series centered at 0.
Let's consider a function $f(x)$ defined by a power series about 0 with a nonzero radius of convergence.

$$
\begin{aligned}
f(x) & =c_{0}+c_{1} x+c_{2} x^{2}+c_{3} x^{3}+\cdots \\
f^{\prime}(x) & =c_{1}+2 c_{2} x+3 c_{3} x^{2}+\cdots \\
f^{\prime \prime}(x) & =2 c_{2}+3 \cdot 2 c_{3} x+4 \cdot 3 c_{4} x^{2}+\cdots \\
f^{\prime \prime \prime}(x) & =3 \cdot 2 c_{3}+4 \cdot 3 \cdot 2 c_{4} x+5 \cdot 4 \cdot 3 c_{5} x^{2}+\cdots \\
\left.f^{4}\right)(x) & =4 \cdot 3 \cdot 2 c_{4}+5 \cdot 4 \cdot 3 \cdot 2 c_{5} x+\cdots
\end{aligned}
$$

$$
f(0)=C_{0}
$$

$$
f^{\prime}(0)=c_{1}
$$

$$
\begin{aligned}
f^{\prime \prime \prime}(0) & =2 c_{2} \\
f^{\prime \prime \prime}(0) & =3 \cdot 2 c_{3} \\
f^{\prime(4)}(0) & =4 \cdot 3 \cdot 2 c_{4}
\end{aligned}
$$

$f(k)(x)=(k!) c_{k}+(k+1)!\cdot c_{k+1} x+\cdots$

$$
f^{(k)}(0)=(\dot{k}!) c_{k}
$$

What is the coefficient, c_{k} ?

$$
\begin{aligned}
& f^{(F)}(0)=(k!) c_{k} \\
& c_{k}=\frac{f^{(k)}(0)}{(k)!}
\end{aligned}
$$

This was created by Keenan Xavier Lee, 2013. See my website for more information, lee-apcalculus.weebly.com.

Theorem (Maclaurin Series)
So, if $f(x)$ can be represented by a power series on $(-R, R)$, then the power series maybe written as

$$
\begin{aligned}
f(x) & =\sum_{k=0}^{\infty} \frac{f^{(k)}(0)}{k!} x^{k} \\
& =f(0)+f^{\prime}(0) x+\frac{f^{\prime \prime}(0)}{2!} x^{2}+\frac{f^{\prime \prime \prime}(0) x^{3}}{3!}+\cdots
\end{aligned}
$$

[Examples] Find the Macluin Series of the function $f(x)=e^{x}$ \& its radius of (1) Convergence.

$$
\begin{aligned}
& \text { (1) } f(x)=\sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{(n)!} x^{n}=f(0)+f^{\prime}(0) x+\frac{f^{\prime \prime}(0)}{2!}+x^{2}+\frac{f^{\prime \prime \prime}(0)}{3!} x^{3}+\cdots \\
& f(x)=e^{x} \quad f(0)=1 \\
& f^{\prime}(x)=e^{x} \quad f^{\prime}(0)=1 \\
& f^{\prime \prime}(x)=e^{x} \quad f^{\prime \prime}(0)=1 \\
& f^{\prime \prime \prime}(x)=e^{x} \quad f^{\prime \prime \prime}(0)=1 \\
& \vdots \\
& =1+1 x+\frac{1 x^{2}}{2!}+\frac{1}{3!} x^{3}+\frac{1}{4!} x^{4}+\cdots=\sum_{n=0}^{\infty} \frac{1}{n!} x^{n}
\end{aligned}
$$

(use rato test to determine radius of convergence)

$$
\Rightarrow \lim _{n \rightarrow \infty} \frac{\left.\left|\begin{array}{l}
n+1 \\
(n+1)! \\
\frac{x^{n}}{n!}
\end{array}\right|=\lim _{n \rightarrow \infty} \right\rvert\, \frac{x^{n+1}}{\frac{x^{n+1}}{(n+1)!}} \cdot \frac{n^{!}}{x^{n}+1}}{x^{n}}=\lim _{n \rightarrow \infty} \frac{1}{n+1} \cdot|x|=0<1 \text {, absolutely } \text { convergent }
$$

Radius of Convergence: ∞
(2) $f(x)=\sin x$

$$
f(x)=\sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{(n)!} x^{n}=f(0)+f^{\prime}(0) x+\frac{f^{\prime \prime}(0)}{2!}+x^{2}+\frac{f^{\prime \prime \prime}(0)}{3!} x^{3}+\cdots
$$

$$
\begin{aligned}
& f(x)=\sin x \longrightarrow f^{\prime}(0)=0 \\
& f^{\prime}(x)=\cos x \longrightarrow f^{\prime}(0)=1 \\
& f^{\prime \prime}(x)=-\sin x \rightarrow f^{\prime \prime}(0)=0 \\
& f^{\prime \prime}(x)=-\cos x \rightarrow f^{\prime \prime \prime}(0)=-1 \\
& f^{\prime}(4)(x)=\sin x \rightarrow f^{(t)}(0)=1
\end{aligned}
$$

$$
\begin{aligned}
& \sin x=0+1 x-\frac{0 x^{2}}{2!}-\frac{1}{3!} x^{3}+\frac{0 x^{4}}{4!}+\frac{1}{5!} x^{5}+\frac{0}{6!} x^{6}-\frac{1}{7!} x^{7}+\cdots \\
& \sin x=1-\frac{1}{3!} x^{3}+\frac{1}{5!} x^{5}-\frac{1}{7!} x^{7}+\cdots=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n+1)!} x^{2 n+1}
\end{aligned}
$$

[Taylor Serves centered at $\left.x_{0}\right]$,
In the same way as before (as centered at $x=0$), we find that

$$
c_{k}=\frac{f^{(k)}\left(x_{0}\right)}{k!}
$$

Therefore, the Taylor Series expansion of f centered at x_{0} is

$$
f(x)=\sum_{n=0}^{\infty} \frac{f^{(n)}\left(x_{0}\right)}{n!}\left(x-x_{0}\right)^{n} .
$$

This was created by Keenan Xavier Lee, 2013. See my website for more information, lee-apcalculus.weebly.com.
[Example] Find the Taylor series expansion of $\sin x$ centered a $\frac{\pi}{4}$.

$$
\begin{aligned}
& f(x)=\sum_{n=0}^{\infty} \frac{f^{(n)}\left(x_{0}\right)}{n!}\left(x-x_{0}\right)^{n} . \\
& f(x)=\sin x \longrightarrow f^{n}\left(\frac{\pi}{4}\right)=\frac{\sqrt{2}}{4} \\
& f^{\prime}(x)=\cos x \longrightarrow f^{\prime}\left(\frac{\pi}{4}\right)=\frac{\sqrt{2}}{2} \\
& f^{\prime \prime}(x)=-\sin x \longrightarrow f^{\prime \prime}\left(\frac{\pi}{4}\right)=-\frac{\sqrt{2}}{2} \\
& f^{\prime \prime \prime}(x)=-\cos x \rightarrow f^{\prime \prime \prime}\left(\frac{\pi}{4}\right)=-\frac{\sqrt{2}}{2} \\
& f^{(4)}(x)=\sin x \longrightarrow f^{\prime \prime}\left(\frac{\pi}{4}\right)=\frac{\sqrt{2}}{2}
\end{aligned}
$$

$$
\begin{aligned}
\sin x & =\frac{\sqrt{2}}{2}+\frac{\sqrt{2}}{2}\left(x-\frac{\pi}{4}\right)-\frac{\sqrt{2}}{2} \frac{\left(x-\frac{\pi}{4}\right)^{2}}{2!}-\frac{\sqrt{2}}{2} \frac{\left(x-\frac{\pi}{4}\right)^{3}}{3!}+\cdots \\
& =\frac{\sqrt{2}}{2} \sum_{n=0}^{\infty} \frac{(-1)^{\frac{k}{2}}}{k!}\left(x-\frac{\pi}{4}\right)^{k} .
\end{aligned}
$$

