7.1 Multiplying \& Dividing Rationals
©ld-A Exponential Rules
Product Rule: $x^{a} \cdot x^{b}=x^{a+b}$
Power Raised to a Power: $\left(x^{a}\right)^{b}=x^{a b}$ Qustient Rule: $\frac{x^{a}}{x^{b}}=x^{a-b}$
Negative Exponent: $x^{-n}=\frac{1}{x^{n}}$
[Examples] Simplify.
(1) $\left(-3 c^{4}\right)^{2}=9 c^{8}$
(2) $\left(4 x^{2} y^{3}\right)^{3}=64 x^{6} y^{9}$
(3) $\frac{x^{12} y^{4}}{x^{20} y}=x^{-8} y^{3}=\frac{y^{3}}{x^{8}}$
(4) $\frac{24 x^{4} y^{6}}{-8 x^{3} y^{7}}=-3 x y^{-1}=\frac{-3 x}{y}$
(5) $\frac{1}{9 x^{-2} y^{-1}}=\frac{x^{2} y^{\prime}}{9}$
(6)

$$
\text { (6) } \begin{aligned}
& \left(4 a^{2} \cdot b\right)^{3} \cdot(a b)^{3} \\
= & 64 b^{6} b^{3} \cdot a^{3} b^{3} \\
= & 64 a^{9} b^{6}
\end{aligned}
$$

(7) $\left(\frac{3 x^{2} z^{4}}{2 x z}\right)^{3}=\frac{27 x^{6} z^{12}}{8 x^{3} z^{3}}=\frac{27 x^{3} z^{9}}{8}$
(8) $\frac{3 a^{7} b^{-5}}{27 a^{-3} b^{8}}=\frac{3 a^{7} a^{3}}{27 b^{8} b^{5}}=\frac{1 a^{10}}{9 b^{13}}$

Old-B Factor.
(9) $x^{2}-2 x-8=(x-4)(x-2)$
(10) $x^{2}-5 x=x(x-5)$
(11) $x^{5}-9 x^{3}=x^{3}(x-3)(x+3)$
(12) $x^{2}-x-6=(x-3)(x+2)$
(13) $x^{2}-25=(x-5)(x+5)$
(13) $x^{3}-8=(x-2)\left(x^{2}+2 x+4\right)$

This was created by Keenan Xavier Lee - 2014. See my website for more information, lee-apcalculus.weebly.com.
old-c] Simplifying Fractions
(1) $\frac{9}{24}=\frac{3(3)}{8(\beta)}=\frac{3}{8}$
(2) $\frac{4}{16}=\frac{(1)(4)}{(4)(4)}=\frac{1}{4}$
(3) $\frac{75}{100}=\frac{3(25)}{4(25)}=\frac{3}{4}$
new A,B,C Simplifying Rational Expressions
What is a rational expression? A rational expression is a quotient of 2 polynomials.

$$
\text { (examples) } \frac{x^{2}-4}{x-2} \quad \frac{10}{x^{2}-6} \quad \frac{x+3}{x-7}
$$

[Examples-A] Simplify the rational expression.
(1) $\frac{10 x^{8}}{6 x^{4}}=\frac{5 x^{4}}{3}$
(2) $\frac{9 x^{10}}{24 x^{15}}=\frac{3 x^{-5}}{8}=\frac{3}{8 x^{5}}$
(3) $\frac{4 x^{15}}{16 x^{16}}=\frac{1}{4} x^{-1}=\frac{1}{4 x}$.
[Examples-B] Simplify the rational expression.
(1) $\frac{x^{2}-4}{x-2}=\frac{(x+2)(x-2)}{1(x-2)}=x+2$.
(2) $\frac{x^{2}+x-12}{x^{2}+10 x+24}=\frac{(x-3)(x+4)}{(x+6)(x+4)}=\frac{x-3}{x+6}$
(3) $\frac{3 x+4}{3 x^{2}+x-4}=\frac{1(3 x+4)}{(3 x+4)(x-1)}=\frac{1}{(x-1)}$

This was created by Keenan Xavier Lee - 2014. See my website for more information, lee-apcalculus.weebly.com.
(4) $\frac{x^{2}-4 x}{x^{2}-2 x-8}=\frac{x(x-4)}{(x-4)(x+2)}=\frac{x}{x-2}$
(5) $\frac{2 x-10}{x-5}=\frac{2(x-5)}{1(x-5)}=2$.

Old -D Multiplying Fractions (cross reducing is important!)
(1) $\frac{5}{16} \cdot \frac{42^{(2)}}{8}=\frac{5}{1} \cdot \frac{2}{8}=\frac{10}{8}=\frac{5(2)}{4(2)}=\frac{5}{4}$
(2) $\frac{(1)}{\text { (1) }^{7}} \cdot \frac{21^{3}}{A_{(2)}}=\frac{3}{2}$
(3) $\frac{1}{2} \div \frac{3}{4}=\frac{1}{2} \cdot \frac{4^{2}}{3}=\frac{2}{3}$
(4) $\frac{7}{6} \div \frac{14}{8}=\frac{(17)}{3^{3}} \cdot \frac{8^{(4)}}{14}=\frac{4}{6}=\frac{3}{2}$
(5) $\frac{8}{10} \div \frac{5}{20}=\frac{8}{10} \cdot \frac{20^{2}}{5}=\frac{16}{5}$

This was created by Keenan Xavier Lee - 2014. See my website for more information, lee-apcalculus.weebly.com.

Hew - D Multiplying \& Dividing Rational Expressions
Steps

- Factor all numerators \& denominators completely.

2. Divide ont comm factors of the numerator \& divide denominators.
3. Multiply numerators. Divide denominators.
(Be sure the numerator \& denominator have no othercomniau factor other than 1.)
[Examples] Multiply.

$$
\begin{array}{rll}
\text { (1) } \frac{x-3}{4 x+20} \cdot \frac{x+5}{x^{2}-9} & & \text { (2) } \frac{10 x-40}{x^{2}-6 x+8} \cdot \frac{x+3}{5 x+15} \\
= & =\frac{1(x-3)}{4(x+5)} \cdot \frac{1(x-4)}{(x+3)(x-3)} & \\
=\frac{1}{4(x+3)} & =\frac{1(x+3)}{(x-2)} &
\end{array}
$$

[Examples] Divide.

$$
\begin{aligned}
& \text { (1) } \frac{x^{4}-9 x^{2}}{x^{2}-4 x+3} \div \frac{x^{4}+2 x^{3}-8 x^{2}}{x^{2}-16} \\
& \frac{x^{4}-9 x^{2}}{x^{2}-4 x+3} \cdot \frac{x^{2}-16}{x^{4}+2 x^{3}-8 x^{2}} \\
& \frac{x^{2}\left(x^{2}-9\right)}{(x+3)(x-1)} \cdot \frac{(x+4)(x-4)}{x^{2}\left(x^{2}+2 x-8\right)} \\
& \frac{x^{2}(x+3)(x-3)}{(x+3)(x-1)} \cdot \frac{(x+4)(x-4)}{x^{2}(x-2)(x-4)} \\
& \frac{(x+3)(x+4)}{(x-1)(x-2)} .
\end{aligned}
$$

