7.1 Substitution Rule for Integration

Standards:
MCI1
MCIId
\qquad
\qquad
\qquad

This was created by Keenan Xavier Lee, 2013. See my website for more information, lee-apcalculus.weebly.com

Old Integration using power rule for antiderivatives
Recall: In order to apply power rule for antidenvatives, the fundion must be sum.
(1) $\int x^{2}-\sin x d x=\frac{x^{3}}{3}+\cos x+c$
(2)

$$
\begin{aligned}
\int x^{2}+\sqrt{x} d x=\text { Rewrite }=\int x^{2}+x^{1 / 2} d x & =\frac{x^{3}}{3}+\frac{x^{3 / 2}}{\frac{3}{2}}+c \\
& =\frac{1}{3} x^{3}+\frac{2}{3} x^{3 / 2}+c \\
& =\frac{1}{3} x^{3}+\frac{2 \sqrt{x^{3}}}{3}+c
\end{aligned}
$$

(3)

$$
\begin{gathered}
\int_{0}^{4} \frac{1-\sqrt{n}}{\sqrt{u}} d u=\int_{0}^{4} \frac{1-u^{1 / 2}}{u^{1 / 2}} d u=\int_{0}^{4} \frac{1}{u^{1 / 2}}-\frac{n^{1 / 2}}{n^{1 / 2}} d u \\
\left.\quad=\int_{0}^{4} u^{-1 / 2}-1 d u=\frac{u^{1 / 2}}{1 / 2}-u=2 u^{1 / 2}-u\right]_{0}^{4} \\
\\
=\left[2(4)^{1 / 2}-(4)\right]-[0]=0 .
\end{gathered}
$$

new Substitution Rule for Integration
Now: What it we have to deal with composition of functions?
Recall \rightarrow Chain Rule

$$
\frac{d}{d x} f(g(x))=f^{\prime}(g(x)) \cdot g^{\prime}(x)
$$

Now let's integrate this:

$$
\begin{aligned}
\int \frac{d}{d x} f(g(x)) & =\int f^{\prime}(g(x)) \cdot g^{\prime}(x) \\
f(g(x)) & =\int f^{\prime}(g(x)) \cdot g^{\prime}(x)
\end{aligned}
$$

Basic Idea When integrating a composition of functions, to compute them it is the "chain rule in reverse".

U-substition Technique will help compute the "chain noe in reverse".

$$
\begin{aligned}
& \text { [Example] } \int 2 x\left(x^{2}+1\right)^{9} d x \\
& \int \frac{2 x\left(x^{2}+1\right)^{9}}{9^{9}} d x=\int u^{9} d u=\frac{u^{10}}{10}+C=\frac{\left(x^{2}+1\right)^{10}}{10}+C . \\
& u=x^{2}+1 \\
& d u=2 x d x
\end{aligned}
$$

Check solution: $y=\frac{\left(x^{2}+1\right)^{10}}{10}=\frac{1}{10}\left(x^{2}+1\right)^{10}$

$$
y^{\prime}=\frac{1}{1} \text { Hip }
$$

(2)

$$
\begin{aligned}
& \int x e^{x^{2}} d x=\frac{1}{2} \int e^{u} d u=\frac{1}{2} e^{u}+c=\frac{1}{2} e^{x^{2}}+C . \\
& u=x^{2} \\
& d u=2 x d x \Rightarrow \frac{1}{2} d u=x d x
\end{aligned}
$$

check solution: $y=\frac{1}{2} e^{x^{2}}+C$

$$
\begin{aligned}
y^{\prime} & =\frac{1}{2} e^{x^{2}} \cdot 2 x \\
& =x e^{x^{2}} .
\end{aligned}
$$

$$
\left.\begin{array}{l}
\text { (3) } \int 2 x \sqrt{1+x^{2}} d u=\int \sqrt{u} d u=\int u^{1 / 2} d u
\end{array}=\frac{u^{3 / 2}}{3 / 2}+c\right]+x^{2}+\begin{aligned}
& d u=2 x d x \\
&=\frac{2}{3} u^{3 / 2}+c \\
&=\frac{2}{3}\left(1+x^{2}\right)^{3 / 2}+c \\
&=\frac{2 \sqrt{1+x^{2}}}{3}+C
\end{aligned}
$$

$$
\begin{aligned}
& \text { (4) } \begin{aligned}
& \int x^{3} \cos \left(x^{4}+2\right) d x=\frac{1}{4} \int \cos u d u=\frac{1}{4} \sin u+c \\
&=\frac{1}{4} \sin \left(x^{4}+2\right. \\
& u=x^{4}+2 \\
& d u=4 x^{3} d x \Rightarrow \frac{1}{4} d u=x^{3} d x
\end{aligned}
\end{aligned}
$$

$$
\begin{aligned}
& \text { (5) } \int \sqrt{2 x+1} d x \Rightarrow \frac{1}{2} \int \sqrt{u} d u=\frac{1}{2} \int u^{1 / 2} d u=\frac{1}{2} \frac{u^{3 / 2}}{3 / 2}+c \\
& \\
& \begin{aligned}
& u=2 x+1 \\
& d u=2 d x \Rightarrow \frac{1}{2} d u=d x\left.=\frac{2}{3}\right) u^{3 / 2}+c \\
&=\frac{1}{3}(2 x+1)^{3 / 2}+c \\
&=\frac{1 \sqrt{(2 x+1)^{3}}}{3}+c
\end{aligned}
\end{aligned}
$$

$$
\begin{aligned}
& \text { (6) } \int \cos 3 x d x=\frac{1}{3} \int \cos u d u=\frac{1}{3} \sin u+c \\
& ==\frac{1}{3} \sin (3 x)+c \\
& d u=3 d x \Rightarrow \frac{1}{3} d u=d x
\end{aligned}
$$

Trigonometric Substitution
With integrating trig functions, the basic idea is to:
(1) use trig identities
(2) use u-substitution technique

