7.1 Substitution Rule for Integration

Standards:	
MCI1	
MCI1d	

This was created by Keenan Xavier Lee, 2013. See my website for more information, lee-apcalculus.weebly.com.

[Old] Integration using power rule for antiderivatives <u>Recall:</u> In order to apply power rule for antidonvatives, the function must be <u>sum</u>. (1) $\int x^2 - \sin x \, dx = \frac{x^3}{3} + \cos x + C$ (2) $\int x^2 + \sqrt{x} dx = \frac{\text{Remite}}{3} = \int \frac{x^2 + x'^2}{x^2 + x'^2} dx = \frac{x^3}{3} + \frac{x'^2}{3} + \frac{x'^2}{3$ $= \frac{1}{3} \times \frac{2}{3} + \frac{2}{3} \times \frac{3}{2} + C$ $= \frac{1}{3} \times \frac{3}{4} + \frac{2}{3} \times \frac{2}{3} + C$ $3\int_{0}^{4} \frac{1-\sqrt{h}}{\sqrt{u}} du = \int_{0}^{4} \frac{1-u^{2}}{u^{2}} du = \int_{0}^{4} \frac{1}{u^{2}} - \frac{u^{2}}{u^{2}} du$ $= \int_{0}^{4} u^{-\frac{1}{2}} - 1 \, du = \frac{u^{\frac{1}{2}}}{\frac{1}{2}} - u = 2u^{\frac{1}{2}} - u^{\frac{1}{2}}$ $= \left[2(4)^{\frac{1}{2}} - (4) \right] - \left[0 \right] = 0.$

This was created by Keenan Xavier Lee, 2013. See my website for more information, lee-apcalculus.weebly.com.

New Substitution Rule for Integration
Now: What if we have to deal with composition of functions?
Recall
$$\rightarrow$$
 Chain Rule
 $\frac{d}{dx} f(g(x)) = f'(g(x)) \cdot g'(x)$
 $\frac{d}{dx} f(g(x)) = f'(g(x)) \cdot g'(x)$
New let's integrate this:
 $\int \frac{d}{dx} f(g(x)) = \int f'(g(x)) \cdot g'(x) =$
Basic Idea When integrating a composition of functions, to
compute them it is the chain rule in reverse.
U-substition Technique will help compute the "chain rule in reverse".
U-substition Technique will help compute the "chain rule in reverse".
Example $\int 2x(x^2+1)^9 dx = \int u^9 du = u'^9 + C = \frac{(x^2+1)^{10}}{10} + C \cdot \frac{10}{10} +$

 $\sum_{x \in x^{2}} xe^{x^{2}} dx = \frac{1}{2} \int_{z} e^{u} du = \frac{1}{2} e^{u} + c = \frac{1}{2} e^{x^{2}} + c .$ $u = x^{2}$ $du = 2x dx \Rightarrow \frac{1}{2} du = x dx$ $check solution: y = \frac{1}{2} e^{x^{2}} + c$ $y' = \frac{1}{2} e^{x^{2}} \cdot 2x$

 $= \chi e^{\chi^2}$.

 $=\frac{1}{4}\int \cos u \, du = \frac{1}{4}\sin u + c$ (4) $(x^{3} \cos(x^{4}+2)) dx$ $=\frac{1}{4}\sin(x^{4}+2)+c$ $\begin{array}{c} u = x^{4} + 2 \\ du = 4x^{3} dx \Rightarrow \frac{1}{4} du = x^{3} dx \end{array}$

This was created by Keenan Xavier Lee, 2013. See my website for more information, lee-apcalculus weebly.com.

$G \int \cos 3x \, dx = \frac{1}{3} \int \cos u \, du = \frac{1}{3} \sin u + c$

U= 3×		= _	- 5	m.	(2x	1+	
$du=3dx \Rightarrow =$	du=dx		3 1				

This was created by Keenan Xavier Lee, 2013. See my website for more information, lee-apcalculus.weebly.com.

Thigmmetric Substitution

With integrating trig functions, the basic idea is to: ① Use trig identities ② Use u-substitution technique

This was created by Keenan Xavier Lee, 2013. See my website for more information, lee apcalculus weebly.com.