72 Adding \& Subtracting Rationals

Old Adding \& Subtracting Fractions
(1) $\frac{4}{5}+\frac{3}{5}=\frac{7}{5}$
(2) $\frac{-2}{11}+\frac{7}{11}=\frac{5}{11}$

What if fractions do not have the same denominator? Find the least common multiple (LCM).

$$
\begin{aligned}
& \text { (1) } \frac{1}{2}+\frac{3}{5} \\
& \begin{array}{l}
25 \\
4 \text { (iD) }
\end{array} \\
& \text { (2) } \frac{2}{3}-\frac{1}{6} \\
& 3 \text { (b) } \\
& \text { (b) } 12 \\
& =\frac{2 \cdot 2}{3 \cdot 2}-\frac{1 \cdot 1}{6 \cdot 1} \frac{12}{15} \\
& =\frac{5}{10}+\frac{6}{10}=\frac{5+6}{10} \\
& =\frac{4}{6}-\frac{1}{6}=\frac{4-1}{6} \\
& =\frac{11}{10} \quad=\frac{3}{6}=\frac{1}{2}
\end{aligned}
$$

new Adding \& Subtracting Rational Expressions
Basic Idea You may add \& subtract rational expressims if they have the same denominator.
$(1) 3$

$$
\frac{3 x-4}{x+3}+\frac{2 x+5}{x+3}=\frac{(3 x-4+(2 x+5)}{x+3}=\frac{3 x-4+2 x+5}{x+3}=\frac{5 x+1}{x+3}
$$

(2)

$$
\frac{2 x-1}{x^{2}+2}-\frac{4 x+4}{x^{2}+2}=\frac{(2 x-1)-(4 x+4)}{x^{2}+2}=\frac{2 x-1-4 x-4}{x^{2}+2}=\frac{-2 x-5}{x^{2}+2}
$$

(3)

$$
\begin{aligned}
& \text { (3) } \frac{x-1}{x}+\frac{x+2}{x^{2}}=\frac{x-1(x)}{x(x)}+\frac{x+2}{x^{2}}=\frac{x^{2}-x}{x^{2}}+\frac{x+2}{x^{2}}=\frac{x^{2}-x+x+2}{x^{2}} \\
& =\frac{x^{2}+2}{x^{2}} \\
& \text { (4) } \frac{x-1}{x^{2}+3 x+2}+\frac{x}{x+1}=\frac{x-1}{(x+2)(x+1)}+\frac{x}{x+1}=\frac{x-1}{(x+2)(x+1)}+\frac{x(x+2)}{(x+1)(x+2)} \\
& =\frac{x-1+x(x+2)}{(x+1)(x+2)}=\frac{x-1+x^{2}+2 x}{(x+1)(x+2)}=\frac{x^{2}+3 x-1}{(x+1)(x+2)}
\end{aligned}
$$

$$
\begin{aligned}
& \text { (5) } \frac{x+4}{5}+\frac{x}{x+5}=\frac{x+4(x+5)}{5(x+5)}+\frac{x(5)}{(x+5)(5)}=\frac{(x+4)(x+5)+5 x}{5(x+5)} \\
& =\frac{x^{2}+9 x+20+5 x}{5(x+5)}=\frac{x^{2}+14 x+20}{5(x+5)}
\end{aligned}
$$

