7.3 Integration By Parts
\qquad
MCI1
MCIId
\qquad
\qquad
\qquad

Old Substitution Rule for Integration

$$
\begin{aligned}
& \text { (1) } \int x^{3} \cos \left(x^{4}+2\right) d x=\frac{1}{4} \int \cos u d u=\frac{1}{4}[-\sin u]+c \\
& u=x^{4}+2 \\
& d=4 x^{3} d x \\
& \frac{1}{4} d u=x^{3} d x \\
& =\frac{1}{4} \sin u+c=-\frac{1}{4} \sin \left(x^{4}+2\right)+c
\end{aligned}
$$

$$
\text { (2) } \begin{aligned}
& \int \sin ^{5} x \cos ^{2} x d x=\int \sin ^{4} x \cos ^{2} x \sin x d x=\int\left(\sin ^{2} x\right)^{2} \cos ^{2} x \sin x d x \\
& =\int\left(1-\cos ^{2} x\right)^{2} \cos ^{2} x \sin x d x=-\int\left(1-u^{2}\right)^{2} u^{2} d u=\int\left(1-u^{2}\right)\left(1-u^{2}\right) u^{2} d u \\
& u=\cos x \\
& d u=-\sin x d x \\
& -d u=\sin x d x \\
& =\int\left(1-2 u^{2}+u^{4}\right) u^{2} d u=\int u^{2}-2 u^{4}+u^{6} d u=\frac{u^{3}}{3}-\frac{2 u^{5}}{5}+\frac{u^{7}}{7}+c \\
& =\frac{\cos ^{3} x}{3}-\frac{2 \cos ^{7} x}{7}+\frac{\cos ^{7} x}{7}+c
\end{aligned}
$$

new Integration By Parts
Let's consider the product rule for differentiation:

$$
\frac{d}{d x}[f(x) \cdot g(x)]=f^{\prime}(x) \cdot g(x)+f(x) \cdot g^{\prime}(x)
$$

Now let's integrate both sides:

$$
\begin{aligned}
& \int \frac{d}{d x}[f(x) \cdot g(x)] d x=\int f^{\prime}(x) g(x)+f(x) g^{\prime}(x) d x \\
& f(x) g(x)=\int f^{\prime}(x) g(x)+f(x) g^{\prime}(x) d x \\
& f(x) g(x)=\int f^{\prime}(x) g(x) d x+\int f(x) g^{\prime}(x) d x
\end{aligned}
$$

Now let:

$$
\begin{array}{ll}
u=f(x) & d u=f^{\prime}(x) d x \\
v=g(x) & d v=g^{\prime}(x) d x \\
u v & =\int v d u+\int u d v
\end{array}
$$

Finally,

$$
u V-\int v d u=\int u d v<\text { integration by Parts Formula. }
$$

$$
\int u d v=u v-\int v d u
$$

So, to evaluate Suds, we need to:
(1) identify the pieces $u \& d v$
(2.) calculate du $\& v$
(3) substitute the pieces in the correct place, and integrate.
[Exampl e1] Evaluate $\int x e^{2 x} d x$

$$
\begin{aligned}
& \int x e^{2 x} d x=(x)\left(\frac{1}{2} e^{2 x}\right)-\int \frac{1}{2} e^{2 x} d x \\
& u=x=d v=e^{2 x} d x \\
& d u=1 d x=v=\frac{1}{2} e^{2 x} \\
& =\frac{1}{2} x e^{2 x}-\frac{1}{2} \int e^{2 x} d x=\frac{1}{2} x e^{2 x}-\frac{1}{2}\left[\frac{1}{2} e^{2 x}\right]+c \\
& =\frac{1}{2} x e^{2 x}-\frac{1}{4} e^{2 x}+c .
\end{aligned}
$$

[Example] Evaluate $\int \sqrt{t} \ln t d t$.

$$
\begin{aligned}
& \int_{u=\ln t} \sqrt{t} \ln t d t \quad=(\ln t)\left(\frac{2}{3} t^{3 / 2}\right)-\int\left(\frac{2}{3} t^{3 / 2}\right)\left(\frac{1}{t}\right) d t \\
& \begin{array}{l}
u=\ln t \\
d u=\frac{1}{t} d t-v=\frac{t^{1 / 2}}{3 / 2}=\frac{2}{3} t^{3 / 2}
\end{array} \\
& =\frac{2 \sqrt{t^{3}} \ln t}{3}-\frac{2}{3} \int \frac{t^{3 / 2}}{t} d t=\frac{2 \sqrt{t^{3}} \ln t}{3}-\frac{2}{3} \int t^{1 / 2} d t
\end{aligned}
$$

please note? $\ln x$ is NEVER a good choice for do.

Guidelines for choosing " u ":
L - Logarithmic
1 - Inverse Functions
A- Algebraic (poly nominds)
T- Trigonometric Functions
E-Exponertial Functions
[Exampl es] Evaluate $\int t^{2} e^{t} d t$

$$
\begin{aligned}
& \int t^{2} e^{t} d t=t^{2} e^{t}-\int_{u=2 t} 2 t e^{t} d t \quad d v=e^{t} d t \\
& u=t^{2} d v=e^{t} d t \quad d u=2 d t-v=e^{2} e^{t}-\left[2 t e^{t}-\int 2 e^{t} d t\right. \\
& d u=2 t d t-v=e^{t} \quad \\
& =t^{2} e^{t}-\left[2 t e^{t}-2 \int e^{t} d t\right]=t^{2} e^{t}-\left[2 t e^{t}-2 e^{t}\right]+c \\
& =t^{2} e^{t}-2 t e^{t}+2 e^{t}+c .
\end{aligned}
$$

